Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Mar 31 2021 22:28:28
%S 0,2,34,250,1274,5274,19098,63002,194074,567322,1591322,4317210,
%T 11395098,29392922,74350618,184942618,453378074,1097334810,2626158618,
%U 6222250010,14610858010,34032582682,78693531674,180757725210,412685959194
%N a(n) = 26 + 2^(n+1)*(-13 +9*n -3*n^2 +n^3).
%D M. Petkovsek et al., A=B, Peters, 1996, p. 97.
%H Reinhard Zumkeller, <a href="/A036827/b036827.txt">Table of n, a(n) for n = 0..1000</a>
%H S. Sykora, <a href="http://dx.doi.org/10.3247/SL1Math06.002">Finite and Infinite Sums of the Power Series (k^p)(x^k)</a>, DOI 10.3247/SL1Math06.002, Section V.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (9,-32,56,-48,16).
%F a(n) = Sum_{k=0..n} 2^k*k^3. - _Benoit Cloitre_, Jun 11 2003
%F G.f.: 2*x*(1 +8*x +4*x^2)/((1-x)*(1-2*x)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009
%F a(n) = 9*a(n-1) -32*a(n-2) +56*a(n-3) -48*a(n-4) +16*a(n-5) for n>4 with a(0)=0, a(1)=2, a(2)=34, a(3)=250, a(4)=1274. - _Harvey P. Dale_, Dec 15 2011
%F a(n) = Sum_{k=0..n} Sum_{i=0..n} k^3 * C(k,i). - _Wesley Ivan Hurt_, Sep 21 2017
%F E.g.f.: 2 (13*exp(x) + (-13 +14*x +8*x^3)*exp(2*x)). - _G. C. Greubel_, Mar 31 2021
%e a(3) = 2^0*0^3 + 2^1*1^3 + 2^2*2^3 + 2^3*3^3 = 250.
%p A036827:= n-> 2*(13 + 2^n*(-13 +9*n -3*n^2 +n^3)); seq(A026827(n), n=0..30); # _G. C. Greubel_, Mar 31 2021
%t Table[26 +2^(n+1)(-13 +9n -3n^2 +n^3), {n, 0, 30}] (* or *) LinearRecurrence[ {9, -32, 56, -48, 16}, {0, 2, 34, 250, 1274}, 31] (* _Harvey P. Dale_, Dec 15 2011 *)
%o (Haskell)
%o a036827 n = 2^(n+1) * (n^3 - 3*n^2 + 9*n - 13) + 26
%o -- _Reinhard Zumkeller_, May 24 2012
%o (PARI) a(n)=26+2^(n+1)*(-13+9*n-3*n^2+n^3) \\ _Charles R Greathouse IV_, Oct 07 2015
%o (Magma) [2*(13 + 2^n*(-13 +9*n -3*n^2 +n^3)): n in [0..35]]; // _G. C. Greubel_, Mar 31 2021
%o (Sage) [2*(13 + 2^n*(-13 +9*n -3*n^2 +n^3)) for n in (0..35)] # _G. C. Greubel_, Mar 31 2021
%Y Cf. A059841 (p=0,q=-1), A130472 (p=1,q=-1), A089594 (p=2,q=-1), A232599 (p=3,q=-1), A126646 (p=0,q=2), A036799 (p=1,q=2), A036800 (p=2,q=2), this sequence (p=3,q=2), A077925 (p=0,q=-2), A232600 (p=1,q=-2), A232601 (p=2,q=-2), A232602 (p=3,q=-2), A232603 (p=2,q=-1/2), A232604 (p=3,q=-1/2).
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_