login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263689
a(n) = (2*n^6 - 6*n^5 + 5*n^4 - n^2 + 12)/12.
1
1, 1, 2, 34, 277, 1301, 4426, 12202, 29009, 61777, 120826, 220826, 381877, 630709, 1002002, 1539826, 2299201, 3347777, 4767634, 6657202, 9133301, 12333301, 16417402, 21571034, 28007377, 35970001, 45735626, 57617002, 71965909, 89176277, 109687426, 133987426, 162616577, 196171009, 235306402, 280741826
OFFSET
0,3
FORMULA
G.f.: (1 - 6*x + 16*x^2 + 6*x^3 + 81*x^4 + 20*x^5 + 2*x^6)/(1 - x)^7.
a(n + 1) = a(n) + n^5, a(0) = 1.
a(n + 1) - a(n) = A000584(n).
a(n + 1) = A000539(n) + 1.
Sum_{n>0} 1/(a(n + 1) - a(n)) = zeta(5) = 1.036927755...
EXAMPLE
a(0) = 1,
a(1) = 0^5 + 1 = 1,
a(2) = 1^5 + 1 = 2,
a(3) = 2^5 + 2 = 34,
a(4) = 3^5 + 34 = 227,
a(5) = 4^5 + 227 = 1301, etc.
MATHEMATICA
Table[(1/12) (12 + (-1 + n)^2 n^2 (-1 + 2 (-1 + n) n)), {n, 0, 35}]
PROG
(PARI) first(m)=vector(m, n, n--; (2*n^6 - 6*n^5 + 5*n^4 - n^2 + 12)/12) \\ Anders Hellström, Nov 20 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Nov 20 2015
STATUS
approved