login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056520
a(n) = (n + 2)*(2*n^2 - n + 3)/6.
18
1, 2, 6, 15, 31, 56, 92, 141, 205, 286, 386, 507, 651, 820, 1016, 1241, 1497, 1786, 2110, 2471, 2871, 3312, 3796, 4325, 4901, 5526, 6202, 6931, 7715, 8556, 9456, 10417, 11441, 12530, 13686, 14911, 16207, 17576, 19020, 20541, 22141, 23822
OFFSET
0,2
COMMENTS
Hankel transform of A030238. - Paul Barry, Oct 16 2007
Equals (1, 2, 3, 4, 5, ...) convolved with (1, 0, 3, 5, 7, 9, ...). - Gary W. Adamson, Jul 31 2010
a(n) equals n!^2 times the determinant of the n X n matrix whose (i,j)-entry is 1 + KroneckerDelta[i, j] (-1 + (1 + i^2)/i^2). - John M. Campbell, May 20 2011
Positions of ones in A253903 (with offset 1). - Harvey P. Dale, Mar 05 2015
LINKS
Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, Cyclic permutations avoiding patterns in both one-line and cycle forms, arXiv:2312.05145 [math.CO], 2023. See p. 2.
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Amit Kumar Singh, Akash Kumar and Thambipillai Srikanthan, Accelerating Throughput-aware Run-time Mapping for Heterogeneous MPSoCs, ACM Transactions on Design Automation of Electronic Systems, 2012. - From N. J. A. Sloane, Dec 25 2012
FORMULA
a(n) = a(n-1) + n^2.
a(n) = A000330(n) + 1.
G.f.: (1 - 2*x + 4*x^2 - x^3)/(1 - x)^4. - Paul Barry, Apr 14 2010
Let b(0) = b(1) = 1, b(n) = max(b(n-1) + (n - 1)^2, b(n-2) + (n - 2)^2) for n >= 2; then a(n) = b(n+1). - Yalcin Aktar, Jul 28 2011
MATHEMATICA
a[n_] := (n+2)*(2*n^2-n+3)/6; Table[a[n], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Dec 17 2008 *)
s = 1; lst = {s}; Do[s += n^2; AppendTo[lst, s], {n, 1, 41, 1}]; lst (* Zerinvary Lajos, Jul 12 2009 *)
Table[n!^2*Det[Array[KroneckerDelta[#1, #2](((#1^2+1)/(#1^2))-1)+1&, {n, n}]], {n, 1, 20}] (* John M. Campbell, May 20 2011 *)
FoldList[#1 + #2^2 &, 1, Range@ 40] (* Robert G. Wilson v, Oct 28 2011 *)
PROG
(Magma) [(n+2)*(2*n^2-n+3)/6: n in [0..40]]; // Vincenzo Librandi, May 24 2011
(PARI) a(n)=(n+2)*(2*n^2-n+3)/6 \\ Charles R Greathouse IV, Jul 02 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Laura Kasavan (maui12129(AT)cswebmail.com), Aug 26 2000
STATUS
approved