OFFSET
0,3
COMMENTS
Number of linear forests of planted planar trees with n nodes (Christian G. Bower).
Number of ordered trees with n+2 edges and having no branches of length 1 starting from the root. Example: a(1)=1 because the only ordered tree with 3 edges having no branch of length 1 starting from the root is the path tree of length 3. a(n) = A127158(n+2,0). - Emeric Deutsch, Mar 01 2007
Hankel transform is A056520. - Paul Barry, Oct 16 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
INVERT transform of 1, 2, 2, 5, 14, 42, 132, ... (cf. A000108).
a(n) = Sum_{k=0..floor(n/2)} (k+1)*binomial(2*n-3*k+1, n-k+1)/(2*n-3*k+1). Diagonal sums of A033184. - Paul Barry, Jun 22 2004
a(n) = Sum_{k=0..floor(n/2)} (k+1)*binomial(2*n-3*k, n-k)/(n-k+1). - Paul Barry, Feb 02 2005
G.f.: (1-sqrt(1-4*z))/(z*(2-z+z*sqrt(1-4*z))). - Emeric Deutsch, Mar 01 2007
G.f.: c(z)/(1-z^2*c(z)) where c(z) = (1-sqrt(1-4*z))/(2*z). - Ira M. Gessel, Sep 21 2020
D-finite with recurrence: (n+1)*a(n) + (-5*n+1)*a(n-1) + 2*(2*n-1)*a(n-2) + (n+1)*a(n-3) + 2*(-2*n+1)*a(n-4) = 0. - R. J. Mathar, Nov 30 2012
a(n) ~ 2^(2*n+6) / (49 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
MAPLE
g:=(1-sqrt(1-4*z))/z/(2-z+z*sqrt(1-4*z)): gser:=series(g, z=0, 30): seq(coeff(gser, z, n), n=0..25); # Emeric Deutsch, Mar 01 2007
MATHEMATICA
Sum[ triangle[ n-k, (n-k)-(k-1) ], {k, 1, Floor[ (n+1)/2 ]} ]
CoefficientList[Series[(1-Sqrt[1-4*x])/x/(2-x+x*Sqrt[1-4*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Apr 15 1998
STATUS
approved