OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
O. M. D'Antona and E. Munarini, The Cycle-path Indicator Polynomial of a Digraph, Advances in Applied Mathematics 25 (2000), 41-56.
Index entries for linear recurrences with constant coefficients, signature (3,-1,1).
FORMULA
a(n+4) = 3*a(n+3) - a(n+2) + a(n+1), n >= 0.
a(n+3) = 2*a(n+2) + a(n+1) + 2*Sum_{k=0..n} a(k), n >= 0.
G.f.: (1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3).
a(n) = Sum_{k=0..n} binomial(n+k+1,3*k+1)*2^k + 2*Sum_{j=0..n-1} binomial(n+j-1,3*j+1)*2^j. - Emanuele Munarini, Dec 03 2012
MAPLE
seq(coeff(series((1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Oct 27 2019
MATHEMATICA
LinearRecurrence[{3, -1, 1}, {1, 2, 7, 18}, 40] (* G. C. Greubel, Oct 27 2019 *)
PROG
(Maxima) makelist(sum(binomial(n+k+1, 3*k+1)*2^k, k, 0, n) + 2*sum(2^k* binomial(n+k-1, 3*k+1), k, 0, n-1), n, 0, 60); /* Emanuele Munarini, Dec 03 2012 */
(PARI) my(x='x+O('x^40)); Vec((1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3)) \\ G. C. Greubel, Oct 27 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3) )); // G. C. Greubel, Oct 27 2019
(Sage)
def A030236_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x+2*x^2-2*x^3)/(1-3*x+x^2-x^3) ).list()
A030236_list(40) # G. C. Greubel, Oct 27 2019
(GAP) a:=[2, 7, 18];; for n in [4..40] do a[n]:=3*a[n-1]-a[n-2]+a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Oct 27 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ottavio D'Antona (dantona(AT)dsi.unimi.it) and Emanuele Munarini
STATUS
approved