login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238124
Number of ballot sequences of length n having exactly 1 largest part.
5
0, 1, 1, 3, 7, 20, 56, 182, 589, 2088, 7522, 28820, 113092, 464477, 1955760, 8541860, 38215077, 176316928, 832181774, 4033814912, 19973824386, 101257416701, 523648869394, 2765873334372, 14883594433742, 81646343582385, 455752361294076, 2589414185398032
OFFSET
0,4
COMMENTS
Also number of standard Young tableaux with last row of length 1.
Column k=1 of A238123.
With different offset column k=2 of A238750.
LINKS
Joerg Arndt and Alois P. Heinz, Table of n, a(n) for n = 0..70
EXAMPLE
The a(5)=20 ballot sequences of length 5 with 1 maximal element are (dots for zeros):
01: [ . . . . 1 ]
02: [ . . . 1 . ]
03: [ . . . 1 2 ]
04: [ . . 1 . . ]
05: [ . . 1 . 2 ]
06: [ . . 1 1 2 ]
07: [ . . 1 2 . ]
08: [ . . 1 2 1 ]
09: [ . . 1 2 3 ]
10: [ . 1 . . . ]
11: [ . 1 . . 2 ]
12: [ . 1 . 1 2 ]
13: [ . 1 . 2 . ]
14: [ . 1 . 2 1 ]
15: [ . 1 . 2 3 ]
16: [ . 1 2 . . ]
17: [ . 1 2 . 1 ]
18: [ . 1 2 . 3 ]
19: [ . 1 2 3 . ]
20: [ . 1 2 3 4 ]
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) `if`(n=0, 0, `if`(i=1, h([l[], 1$n]),
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i)))
end:
a:= n-> g(n, n, []):
seq(a(n), n=0..30);
MATHEMATICA
b[n_, l_List] := b[n, l] = If[n < 1, x^l[[-1]], b[n - 1, Append[l, 1]] + Sum[If[i == 1 || l[[i - 1]] > l[[i]], b[n - 1, ReplacePart[l, i -> l[[i]] + 1]], 0], {i, 1, Length[l]}]]; a[0] = 0; a[n_] := Coefficient[b[n - 1, {1}], x, 1]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 10 2015, after A238123 *)
PROG
(PARI) A238124(n)=A238123(n, 1) \\ M. F. Hasler, Jun 03 2018
CROSSREFS
Sequence in context: A245891 A058737 A274478 * A129429 A084204 A030238
KEYWORD
nonn
AUTHOR
Joerg Arndt and Alois P. Heinz, Feb 21 2014
STATUS
approved