The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238750 Number T(n,k) of standard Young tableaux with n cells and largest value n in row k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. 3
 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 2, 1, 0, 10, 7, 5, 3, 1, 0, 26, 20, 14, 11, 4, 1, 0, 76, 56, 44, 31, 19, 5, 1, 0, 232, 182, 139, 106, 69, 29, 6, 1, 0, 764, 589, 475, 351, 265, 127, 41, 7, 1, 0, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS Also the number of ballot sequences of length n having last value k. Also the number of standard Young tableaux with n cells where the row containing the largest value n has length k. Also the number of ballot sequences of length n where the last value has multiplicity k. T(0,0) = 1 by convention. Columns k=0-2 give: A000007, A000085(n-1), A238124(n-1). T(2n,n) gives A246731. Row sums give A000085. LINKS Joerg Arndt and Alois P. Heinz, Rows n = 0..60, flattened Wikipedia, Young tableau EXAMPLE The 10 tableaux with n=4 cells sorted by the number of the row containing the largest value 4 are: :[1 4] [1 2 4] [1 3 4] [1 2 3 4]:[1 2] [1 3] [1 2 3]:[1 2] [1 3]:[1]: :[2] [3] [2] :[3 4] [2 4] [4] :[3] [2] :[2]: :[3] : :[4] [4] :[3]: : : : :[4]: : --------------1-------------- : --------2-------- : ----3---- : 4 : Their corresponding ballot sequences are: [1,2,3,1], [1,1,2,1], [1,2,1,1], [1,1,1,1], [1,1,2,2], [1,2,1,2], [1,1,1,2], [1,1,2,3], [1,2,1,3], [1,2,3,4]. Thus row 4 = [0, 4, 3, 2, 1]. Triangle T(n,k) begins: 00: 1; 01: 0, 1; 02: 0, 1, 1; 03: 0, 2, 1, 1; 04: 0, 4, 3, 2, 1; 05: 0, 10, 7, 5, 3, 1; 06: 0, 26, 20, 14, 11, 4, 1; 07: 0, 76, 56, 44, 31, 19, 5, 1; 08: 0, 232, 182, 139, 106, 69, 29, 6, 1; 09: 0, 764, 589, 475, 351, 265, 127, 41, 7, 1; 10: 0, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1; MAPLE h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(l) local n; n:=nops(l); `if`(n=0, 1, add( `if`(i=n or l[i]>l[i+1], x^i *h(subsop(i= `if`(i=n and l[n]=1, NULL, l[i]-1), l)), 0), i=1..n)) end: b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1\$n]), add(b(n-i*j, i-1, [l[], i\$j]), j=0..n/i)): T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, n, [])): seq(T(n), n=0..12); MATHEMATICA h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+ Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, l[[i]]}], {i, n}]]; g[l_] := With[{ n = Length[l]}, If[n == 0, 1, Sum[ If[i == n || l[[i]] > l[[i + 1]], x^i *h[ReplacePart[l, i -> If[i == n && l[[n]] == 1, Nothing, l[[i]] - 1]]], 0], {i, n}]]]; b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]], Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]]; T[n_] := CoefficientList[b[n, n, {}], x]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 27 2021, after Maple code *) CROSSREFS Sequence in context: A106234 A238125 A062507 * A131044 A246027 A077875 Adjacent sequences: A238747 A238748 A238749 * A238751 A238752 A238753 KEYWORD nonn,tabl AUTHOR Joerg Arndt and Alois P. Heinz, Mar 04 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 08:27 EDT 2024. Contains 371698 sequences. (Running on oeis4.)