login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238750
Number T(n,k) of standard Young tableaux with n cells and largest value n in row k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
3
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 2, 1, 0, 10, 7, 5, 3, 1, 0, 26, 20, 14, 11, 4, 1, 0, 76, 56, 44, 31, 19, 5, 1, 0, 232, 182, 139, 106, 69, 29, 6, 1, 0, 764, 589, 475, 351, 265, 127, 41, 7, 1, 0, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1
OFFSET
0,8
COMMENTS
Also the number of ballot sequences of length n having last value k.
Also the number of standard Young tableaux with n cells where the row containing the largest value n has length k.
Also the number of ballot sequences of length n where the last value has multiplicity k.
T(0,0) = 1 by convention.
Columns k=0-2 give: A000007, A000085(n-1), A238124(n-1).
T(2n,n) gives A246731.
Row sums give A000085.
LINKS
Joerg Arndt and Alois P. Heinz, Rows n = 0..60, flattened
Wikipedia, Young tableau
EXAMPLE
The 10 tableaux with n=4 cells sorted by the number of the row containing the largest value 4 are:
:[1 4] [1 2 4] [1 3 4] [1 2 3 4]:[1 2] [1 3] [1 2 3]:[1 2] [1 3]:[1]:
:[2] [3] [2] :[3 4] [2 4] [4] :[3] [2] :[2]:
:[3] : :[4] [4] :[3]:
: : : :[4]:
: --------------1-------------- : --------2-------- : ----3---- : 4 :
Their corresponding ballot sequences are: [1,2,3,1], [1,1,2,1], [1,2,1,1], [1,1,1,1], [1,1,2,2], [1,2,1,2], [1,1,1,2], [1,1,2,3], [1,2,1,3], [1,2,3,4]. Thus row 4 = [0, 4, 3, 2, 1].
Triangle T(n,k) begins:
00: 1;
01: 0, 1;
02: 0, 1, 1;
03: 0, 2, 1, 1;
04: 0, 4, 3, 2, 1;
05: 0, 10, 7, 5, 3, 1;
06: 0, 26, 20, 14, 11, 4, 1;
07: 0, 76, 56, 44, 31, 19, 5, 1;
08: 0, 232, 182, 139, 106, 69, 29, 6, 1;
09: 0, 764, 589, 475, 351, 265, 127, 41, 7, 1;
10: 0, 2620, 2088, 1658, 1303, 971, 583, 209, 55, 8, 1;
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)!/mul(mul(1+l[i]-j+
add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
g:= proc(l) local n; n:=nops(l); `if`(n=0, 1, add(
`if`(i=n or l[i]>l[i+1], x^i *h(subsop(i=
`if`(i=n and l[n]=1, NULL, l[i]-1), l)), 0), i=1..n))
end:
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]),
add(b(n-i*j, i-1, [l[], i$j]), j=0..n/i)):
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, n, [])):
seq(T(n), n=0..12);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1+l[[i]]-j+
Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, l[[i]]}], {i, n}]];
g[l_] := With[{ n = Length[l]}, If[n == 0, 1, Sum[
If[i == n || l[[i]] > l[[i + 1]], x^i *h[ReplacePart[l, i ->
If[i == n && l[[n]] == 1, Nothing, l[[i]] - 1]]], 0], {i, n}]]];
b[n_, i_, l_] := If[n == 0 || i == 1, g[Join[l, Table[1, {n}]]],
Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]], {j, 0, n/i}]];
T[n_] := CoefficientList[b[n, n, {}], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 27 2021, after Maple code *)
CROSSREFS
Sequence in context: A106234 A238125 A062507 * A131044 A246027 A077875
KEYWORD
nonn,tabl
AUTHOR
Joerg Arndt and Alois P. Heinz, Mar 04 2014
STATUS
approved