login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106234 Triangle of the numbers of different forests with one or more isolated vertices. Those forests of rooted trees, have order N and m trees. 3
1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 3, 1, 1, 0, 9, 6, 3, 1, 1, 0, 20, 16, 7, 3, 1, 1, 0, 48, 37, 18, 7, 3, 1, 1, 0, 115, 96, 44, 19, 7, 3, 1, 1, 0, 286, 239, 117, 46, 19, 7, 3, 1, 1, 0, 719, 622, 299, 124, 47, 19, 7, 3, 1, 1, 0, 1842, 1607, 793, 320, 126, 47, 19, 7, 3, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

The unique tree with an isolated node has order one. For N > 1 and m > 1 there is at least one partition of N in m parts, with a part equal to 1, so a(n) > 0 when m > 1 and a(n) = 0 when m = 1 and N > 1.

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

FORMULA

a(n) = sum over the partitions of N: 1K1 + 2K2 + ... + NKN, with exactly m parts and one or more parts equal to 1, of Product_{i=1..N} binomial(A000081(i)+Ki-1,Ki).

EXAMPLE

a(13) = 3 because 5 vertices can be partitioned in 3 trees in two ways: (1) one tree gets 3 nodes and the others get 1 each. (2) two trees get 2 nodes each and the other gets 1. Case (1) corresponds to 2 forests since A000081(3) = 2. Case (2) corresponds to one forest since A000081(2) = 1.

Triangle T(n,k) begins:

  1;

  0,   1;

  0,   1,   1;

  0,   2,   1,   1;

  0,   4,   3,   1,  1;

  0,   9,   6,   3,  1,  1;

  0,  20,  16,   7,  3,  1, 1;

  0,  48,  37,  18,  7,  3, 1, 1;

  0, 115,  96,  44, 19,  7, 3, 1, 1;

  0, 286, 239, 117, 46, 19, 7, 3, 1, 1;

MAPLE

with(numtheory):

g:= proc(n) option remember; `if`(n<=1, n, (add(add(

      d*g(d), d=divisors(j))*g(n-j), j=1..n-1))/(n-1))

    end:

b:= proc(n, i) option remember; `if`(n=0, 0, `if`(i=1,

      x^n, expand(add(x^j*b(n-i*j, i-1)*

      binomial(g(i)+j-1, j), j=0..n/i))))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):

seq(T(n), n=1..14);  # Alois P. Heinz, Jun 25 2014

MATHEMATICA

g[n_] := g[n] = If[n <= 1, n, (Sum[Sum[d*g[d], {d, Divisors[j]}]*g[n-j], {j, 1, n-1}])/(n-1)]; b[n_, i_] := b[n, i] = If[n == 0, 0, If[i == 1, x^n, Expand[ Sum[ x^j*b[n-i*j, i-1]*Binomial[g[i]+j-1, j], {j, 0,  n/i}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 1, n}]][b[n, n]]; Table[T[n], {n, 1, 14}] // Flatten (* Jean-Fran├žois Alcover, Mar 09 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A033185, A105820.

Sequence in context: A214546 A255704 A191347 * A238125 A062507 A238750

Adjacent sequences:  A106231 A106232 A106233 * A106235 A106236 A106237

KEYWORD

nonn,tabl

AUTHOR

Washington Bomfim, Apr 26 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 09:38 EDT 2020. Contains 336245 sequences. (Running on oeis4.)