OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (3,0,-1,3).
FORMULA
4*a(n) = 3^(n+1) + hexaperiodic (1, 3, 1, -1, -3, -1).
O.g.f.: (-1+2*x^2)/((3*x-1)*(x+1)*(x^2-x+1)) = -(3/4)/(3*x-1)-(1/12)/(x+1)+(1/3)*(x+1)/(x^2-x+1). - R. J. Mathar, Nov 28 2007
a(n) = (1/12)*(3^(n+2) - 4*cos((n+1)*Pi/3) + cos((n+1)*Pi) + 4*sqrt(3) * sin(((n+1)*Pi)/3) + I*sin((n+1)*Pi)). [Harvey P. Dale, Jan 21 2012]
12*a(n) = -(-1)^n +3^(n+2) +4*A057079(n). - R. J. Mathar, Oct 03 2021
MATHEMATICA
LinearRecurrence[{3, 0, -1, 3}, {1, 3, 7, 20}, 50] (* Harvey P. Dale, Jan 21 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 22 2007
STATUS
approved