login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A129339
Main diagonal of triangular array T: T(j,1) = 1 for ((j-1) mod 6) < 3, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.
15
1, 2, 4, 7, 11, 16, 23, 37, 74, 175, 431, 1024, 2291, 4825, 9650, 18571, 34955, 65536, 124511, 242461, 484922, 989527, 2038103, 4194304, 8565755, 17308657, 34617314, 68703187, 135812051, 268435456, 532087943, 1059392917, 2118785834
OFFSET
1,2
FORMULA
G.f.: x*(1-x)^3/((1-2*x)*(1-3*x+3*x^2)). [multiplied by x to match the offset by R. J. Mathar, Jul 22 2009]
a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 7; for n > 4, a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3).
Binomial transform of A088911. - Klaus Brockhaus, Jun 17 2007
a(n+1) = A057083(n)/3+2^(n-1), n > 1. - R. J. Mathar, Jul 22 2009
EXAMPLE
First seven rows of T are
[ 1 ]
[ 1, 2 ]
[ 1, 2, 4 ]
[ 0, 1, 3, 7 ]
[ 0, 0, 1, 4, 11 ]
[ 0, 0, 0, 1, 5, 16 ]
[ 1, 1, 1, 1, 2, 7, 23 ].
MATHEMATICA
a[n_] := 2^(n-2) + 2*3^((n-3)/2)*Sin[n*Pi/6]; a[1]=1; Table[a[n], {n, 1, 33}] (* Jean-François Alcover, Aug 13 2012 *)
CoefficientList[Series[(1 - x)^3 / ((1 - 2 x) (1 - 3 x + 3 x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 13 2018 *)
PROG
(PARI) {m=33; v=concat([1, 2, 4, 7], vector(m-4)); for(n=5, m, v[n]=5*v[n-1]-9*v[n-2]+6*v[n-3]); v} \\ Klaus Brockhaus, Jun 10 2007
(Magma) m:=33; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 6 lt 3 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ M[n, n]: n in [1..m] ]; // Klaus Brockhaus, Jun 10 2007
(Magma) m:=33; S:=[ [1, 1, 1, 0, 0, 0][(n-1) mod 6 + 1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Jun 17 2007
(Magma) I:=[1, 2, 4, 7]; [n le 4 select I[n] else 5*Self(n-1)-9*Self(n-2)+6*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 13 2018
CROSSREFS
Cf. A038504, A131022 (T read by rows), A131023 (first subdiagonal of T), A131024 (row sums of T), A131025 (antidiagonal sums of T). First through sixth column of T are in A088911, A131026, A131027, A131028, A131029, A131030 resp.
Sequence in context: A005253 A212364 A320591 * A196719 A011912 A063676
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 28 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Jun 10 2007
STATUS
approved