The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129339 Main diagonal of triangular array T: T(j,1) = 1 for ((j-1) mod 6) < 3, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j. 15
 1, 2, 4, 7, 11, 16, 23, 37, 74, 175, 431, 1024, 2291, 4825, 9650, 18571, 34955, 65536, 124511, 242461, 484922, 989527, 2038103, 4194304, 8565755, 17308657, 34617314, 68703187, 135812051, 268435456, 532087943, 1059392917, 2118785834 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Paul Curtz, Comments on this sequence Index entries for linear recurrences with constant coefficients, signature (5,-9,6). FORMULA G.f.: x*(1-x)^3/((1-2*x)*(1-3*x+3*x^2)). [multiplied by x to match the offset by R. J. Mathar, Jul 22 2009] a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 7; for n > 4, a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3). Binomial transform of A088911. - Klaus Brockhaus, Jun 17 2007 a(n+1) = A057083(n)/3+2^(n-1), n > 1. - R. J. Mathar, Jul 22 2009 EXAMPLE First seven rows of T are [ 1 ] [ 1,  2 ] [ 1,  2,  4 ] [ 0,  1,  3,  7 ] [ 0,  0,  1,  4, 11 ] [ 0,  0,  0,  1,  5, 16 ] [ 1,  1,  1,  1,  2,  7, 23 ]. MATHEMATICA a[n_] := 2^(n-2) + 2*3^((n-3)/2)*Sin[n*Pi/6]; a[1]=1; Table[a[n], {n, 1, 33}] (* Jean-François Alcover, Aug 13 2012 *) CoefficientList[Series[(1 - x)^3 / ((1 - 2 x) (1 - 3 x + 3 x^2)), {x, 0, 33}], x] (* Vincenzo Librandi, Feb 13 2018 *) PROG (PARI) {m=33; v=concat([1, 2, 4, 7], vector(m-4)); for(n=5, m, v[n]=5*v[n-1]-9*v[n-2]+6*v[n-3]); v} \\ Klaus Brockhaus, Jun 10 2007 (MAGMA) m:=33; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 6 lt 3 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ M[n, n]: n in [1..m] ]; // Klaus Brockhaus, Jun 10 2007 (MAGMA) m:=33; S:=[ [1, 1, 1, 0, 0, 0][(n-1) mod 6 + 1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Jun 17 2007 (MAGMA) I:=[1, 2, 4, 7]; [n le 4 select I[n] else 5*Self(n-1)-9*Self(n-2)+6*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 13 2018 CROSSREFS Cf. A038504, A131022 (T read by rows), A131023 (first subdiagonal of T), A131024 (row sums of T), A131025 (antidiagonal sums of T). First through sixth column of T are in A088911, A131026, A131027, A131028, A131029, A131030 resp. Sequence in context: A005253 A212364 A320591 * A196719 A011912 A063676 Adjacent sequences:  A129336 A129337 A129338 * A129340 A129341 A129342 KEYWORD nonn,easy AUTHOR Paul Curtz, May 28 2007 EXTENSIONS Edited and extended by Klaus Brockhaus, Jun 10 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 11:51 EDT 2021. Contains 343821 sequences. (Running on oeis4.)