The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A011912 a(n) = floor(n(n-1)(n-2)/30). 1
 0, 0, 0, 0, 0, 2, 4, 7, 11, 16, 24, 33, 44, 57, 72, 91, 112, 136, 163, 193, 228, 266, 308, 354, 404, 460, 520, 585, 655, 730, 812, 899, 992, 1091, 1196, 1309, 1428, 1554, 1687, 1827, 1976, 2132, 2296, 2468, 2648 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,1,-3,3,-1). [From R. J. Mathar, Apr 15 2010] FORMULA From R. J. Mathar, Apr 15 2010: (Start) a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8). G.f.: x^5*(x^2-2*x+2) / ( (-1+x)^4*(x^4+x^3+x^2+x+1) ). (End) MAPLE seq(floor(binomial(n, 3)/5), n=0..43); # Zerinvary Lajos, Jan 12 2009 MATHEMATICA Table[Floor[(n(n-1)(n-2))/30], {n, 0, 50}] (* or *) LinearRecurrence[ {3, -3, 1, 0, 1, -3, 3, -1}, {0, 0, 0, 0, 0, 2, 4, 7}, 50] (* Harvey P. Dale, Jun 20 2011 *) CoefficientList[Series[x^5*(x^2-2*x+2)/((-1+x)^4*(x^4+x^3+x^2+x+1)), {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *) PROG (MAGMA) [Floor(n*(n-1)*(n-2)/30): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012 CROSSREFS Sequence in context: A320591 A129339 A196719 * A063676 A099385 A331387 Adjacent sequences:  A011909 A011910 A011911 * A011913 A011914 A011915 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 00:04 EDT 2021. Contains 343609 sequences. (Running on oeis4.)