login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320591 Expansion of Product_{k>=1} (1 + x^k/(1 + x)^k). 4
1, 1, 0, 1, -2, 4, -7, 11, -16, 23, -36, 65, -129, 256, -473, 772, -1028, 835, 776, -5755, 17562, -41750, 86678, -165145, 299949, -541837, 1020029, -2068203, 4509512, -10252952, 23465297, -52762788, 115160832, -243018459, 496094524, -982431070, 1894710043, -3574095362 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*((1 + x)^k - x^k))).

G.f.: exp(Sum_{k>=1} A000593(k)*x^k/(k*(1 + x)^k)).

MAPLE

seq(coeff(series(mul((1+x^k/(1+x)^k), k=1..n), x, n+1), x, n), n = 0 .. 37); # Muniru A Asiru, Oct 16 2018

MATHEMATICA

nmax = 37; CoefficientList[Series[Product[(1 + x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

nmax = 37; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k/d + 1) d, {d, Divisors[k]}] x^k/(k (1 + x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]

PROG

(PARI) m=50; x='x+O('x^m); Vec(prod(k=1, m+2, (1 + x^k/(1 + x)^k))) \\ G. C. Greubel, Oct 29 2018

(MAGMA) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1 + x^k/(1 + x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018

CROSSREFS

Cf. A000593, A129519, A320589, A320590.

Sequence in context: A065095 A005253 A212364 * A129339 A196719 A011912

Adjacent sequences:  A320588 A320589 A320590 * A320592 A320593 A320594

KEYWORD

sign

AUTHOR

Ilya Gutkovskiy, Oct 16 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 17:46 EDT 2019. Contains 327273 sequences. (Running on oeis4.)