login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A307548
Expansion of Product_{k>=1} (1 - (x/(1+x))^k).
2
1, -1, 0, 1, -2, 4, -9, 21, -48, 105, -218, 429, -803, 1442, -2521, 4380, -7734, 14091, -26468, 50405, -94980, 172824, -296704, 467589, -644459, 678109, -177123, -1752141, 7003180, -19432494, 46778567, -104623822, 224830880, -473859273, 992825436, -2084921584
OFFSET
0,5
FORMULA
O.g.f.: Sum_{n >= 0} (-1)^n * x^(n*(n+1)/2)/Product_{k = 1..n} ((1 + x)^k - x^k). Cf. A320591. - Peter Bala, Dec 22 2020
MATHEMATICA
m = 35; CoefficientList[Series[Product[1 - (x/(1+x))^k, {k, 1, m}], {x, 0, m}], x] (* Amiram Eldar, May 14 2021 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, 1-(x/(1+x))^k))
CROSSREFS
Convolution inverse of A320590.
Sequence in context: A061439 A351644 A027711 * A084634 A137256 A051164
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Apr 14 2019
STATUS
approved