|
|
A084634
|
|
Binomial transform of 1, 1, 1, 2, 2, 2, 2, 2, ...
|
|
7
|
|
|
1, 2, 4, 9, 21, 48, 106, 227, 475, 978, 1992, 4029, 8113, 16292, 32662, 65415, 130935, 261990, 524116, 1048385, 2096941, 4194072, 8388354, 16776939, 33554131, 67108538, 134217376, 268435077, 536870505, 1073741388, 2147483182, 4294966799, 8589934063
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2^(n+1) - (n^2 + n + 2)/2.
a(n) = 1 + n + n*(n-1)/2 + 2*Sum_{k=3..n} C(n, k).
O.g.f.: (1-3*x+3*x^2)/((1-2*x)*(1-x)^3). - R. J. Mathar, Apr 07 2008
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4). - R. J. Mathar, Apr 07 2008
|
|
MAPLE
|
|
|
MATHEMATICA
|
|
|
PROG
|
(Sage) [2^(n+1)-1-binomial(n+1, 2) for n in range(52)] # Zerinvary Lajos, May 29 2009
(Magma) [2^(n+1)-1-Binomial(n+1, 2): n in [0..50]]; // G. C. Greubel, Mar 18 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|