login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137256
Binomial transform of 2^n, 2^n, 2^n.
2
1, 2, 4, 9, 21, 48, 108, 243, 549, 1242, 2808, 6345, 14337, 32400, 73224, 165483, 373977, 845154, 1909980, 4316409, 9754749, 22044960, 49819860, 112588947, 254442141, 575019162, 1299497904, 2936762649, 6636851721, 14998760928
OFFSET
0,2
COMMENTS
Sequence is identical to half its third differences.
REFERENCES
Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111. See Table 3.
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3).
O.g.f.: (1 -x +x^2)/(1 -3*x +3*x^2 -3*x^3). - R. J. Mathar, Apr 02 2008
MAPLE
m:=30; S:=series( (1-x+x^2)/(1-3*x+3*x^2-3*x^3), x, m+1):
seq(coeff(S, x, j), j=0..m); # G. C. Greubel, Apr 10 2021
MATHEMATICA
LinearRecurrence[{3, -3, 3}, {1, 2, 4}, 30] (* Ray Chandler, Sep 23 2015 *)
PROG
(Magma) I:=[1, 2, 4]; [n le 3 select I[n] else 3*(Self(n-1) -Self(n-2) +Self(n-3)): n in [1..30]]; // G. C. Greubel, Apr 10 2021
(Sage)
def A137256_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-x+x^2)/(1-3*x+3*x^2-3*x^3) ).list()
A137256_list(30) # G. C. Greubel, Apr 10 2021
CROSSREFS
Sequence in context: A027711 A307548 A084634 * A051164 A182904 A281425
KEYWORD
nonn
AUTHOR
Paul Curtz, Mar 11 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 02 2008
STATUS
approved