login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320590
Expansion of Product_{k>=1} 1/(1 - x^k/(1 + x)^k).
10
1, 1, 1, 0, 1, -2, 5, -12, 28, -63, 137, -290, 604, -1253, 2617, -5537, 11870, -25666, 55617, -120103, 257582, -548119, 1158437, -2437114, 5117165, -10748530, 22621055, -47728657, 100932549, -213750621, 452855190, -958925784, 2028187595, -4283531490, 9033779224
OFFSET
0,6
COMMENTS
The zero-based binomial transform of this sequence is A000070, and if we remove first terms it becomes A000041.
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} x^k/(k*((1 + x)^k - x^k))).
G.f.: exp(Sum_{k>=1} sigma(k)*x^k/(k*(1 + x)^k)).
MAPLE
seq(coeff(series(mul(1/(1-x^k/(1+x)^k), k=1..n), x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 16 2018
MATHEMATICA
nmax = 34; CoefficientList[Series[Product[1/(1 - x^k/(1 + x)^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 34; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k] x^k/(k (1 + x)^k), {k, 1, nmax}]], {x, 0, nmax}], x]
PROG
(PARI) m=50; x='x+O('x^m); Vec(prod(k=1, m+2, 1/(1 - x^k/(1 + x)^k))) \\ G. C. Greubel, Oct 29 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1 - x^k/(1 + x)^k): k in [1..(m+2)]]) )); // G. C. Greubel, Oct 29 2018
CROSSREFS
Row n=1 of A175804 (except first term). Row n=0 is A281425.
The version for strict partitions is A320591, row n=1 of A378622, first column A293467.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865.
Sequence in context: A118898 A111586 A192657 * A006979 A019301 A006980
KEYWORD
sign,changed
AUTHOR
Ilya Gutkovskiy, Oct 16 2018
STATUS
approved