login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006980
Compositions: 6th column of A048004.
(Formerly M1411)
7
1, 2, 5, 12, 28, 64, 143, 315, 687, 1485, 3186, 6792, 14401, 30391, 63872, 133751, 279177, 581040, 1206151, 2497895, 5161982, 10646564, 21919161, 45052841, 92461171, 189489255, 387830160, 792810956, 1618840800, 3301999647
OFFSET
6,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.
LINKS
J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29. (Annotated scanned copy)
Index entries for linear recurrences with constant coefficients, signature (2,1,0,-1,-2,-4,-5,-4,-3,-2,-1).
FORMULA
G.f.: x^6 / ((1-x-x^2-x^3-x^4-x^5) * (1-x-x^2-x^3-x^4-x^5-x^6)). - Alois P. Heinz, Oct 29 2008
MAPLE
a:= n-> (Matrix(11, (i, j)-> if i=j-1 then 1 elif j=1 then [2, 1, 0, -1, -2, -4, -5, -4, -3, -2, -1][i] else 0 fi)^n) [1, 7]: seq(a(n), n=6..40); # Alois P. Heinz, Oct 29 2008
PROG
(PARI) Vec(1/(1-x-x^2-x^3-x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6)+O(x^99)) \\ Charles R Greathouse IV, Jan 10 2013
CROSSREFS
Cf. A048004.
Sequence in context: A320590 A006979 A019301 * A045623 A290990 A324586
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrected definition: 6th column of A048004. - Geoffrey Critzer, Nov 09 2008
STATUS
approved