OFFSET
6,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 6..1000
J. L. Yucas, Counting special sets of binary Lyndon words, Ars Combin., 31 (1991), 21-29. (Annotated scanned copy)
Index entries for linear recurrences with constant coefficients, signature (2,1,0,-1,-2,-4,-5,-4,-3,-2,-1).
FORMULA
G.f.: x^6 / ((1-x-x^2-x^3-x^4-x^5) * (1-x-x^2-x^3-x^4-x^5-x^6)). - Alois P. Heinz, Oct 29 2008
MAPLE
a:= n-> (Matrix(11, (i, j)-> if i=j-1 then 1 elif j=1 then [2, 1, 0, -1, -2, -4, -5, -4, -3, -2, -1][i] else 0 fi)^n) [1, 7]: seq(a(n), n=6..40); # Alois P. Heinz, Oct 29 2008
PROG
(PARI) Vec(1/(1-x-x^2-x^3-x^4-x^5)/(1-x-x^2-x^3-x^4-x^5-x^6)+O(x^99)) \\ Charles R Greathouse IV, Jan 10 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrected definition: 6th column of A048004. - Geoffrey Critzer, Nov 09 2008
STATUS
approved