login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A006982
Number of unlabeled distributive lattices on n nodes.
(Formerly M0700)
9
1, 1, 1, 1, 2, 3, 5, 8, 15, 26, 47, 82, 151, 269, 494, 891, 1639, 2978, 5483, 10006, 18428, 33749, 62162, 114083, 210189, 386292, 711811, 1309475, 2413144, 4442221, 8186962, 15077454, 27789108, 51193086, 94357143, 173859936, 320462062, 590555664, 1088548290, 2006193418, 3697997558, 6815841849, 12563729268, 23157428823, 42686759863, 78682454720, 145038561665, 267348052028, 492815778109, 908414736485
OFFSET
0,5
REFERENCES
P. D. Lincoln, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. Belohlavek and V. Vychodil, Residuated lattices of size <=12, Order 27 (2010) 147-161, Table 6; DOI:10.1007/s11083-010-9143-7; Extended version.
Aaron Chan, Erik Darpö, Osamu Iyama, and René Marczinzik, Periodic trivial extension algebras and fractionally Calabi-Yau algebras, arXiv:2012.11927 [math.RT], 2020.
M. Erné, J. Heitzig and J. Reinhold, On the number of distributive lattices, Electronic Journal of Combinatorics, 9 (2002), #R24.
J. Heitzig and J. Reinhold, The number of unlabeled orders on fourteen elements, Order 17 (2000) no. 4, 333-341.
J. Heitzig and J. Reinhold, Counting finite lattices, preprint no. 298, Institut für Mathematik, Universität Hanover, Germany, 1999.
J. Heitzig and J. Reinhold, Counting finite lattices, Algebra Universalis, 48 (2002), 43-53.
Institut f. Mathematik, Univ. Hanover, Erne/Heitzig/Reinhold papers
P. Jipsen, Planar distributive lattices up to size 15 (illustration of a(1..15)), personal web page, March 2014.
Jukka Kohonen, Cartesian lattice counting by the vertical 2-sum, Order (2021); see also on arXiv, arXiv:2007.03232 [math.CO], 2020.
CROSSREFS
KEYWORD
hard,nonn,nice
EXTENSIONS
More terms from Jobst Heitzig (heitzig(AT)math.uni-hannover.de), Feb 02 2001. These were computed by the same algorithm that was used to enumerate the posets on 14 elements.
STATUS
approved