The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000047 Number of integers <= 2^n of form x^2 - 2y^2. (Formerly M0701 N0259) 3
 1, 2, 3, 5, 8, 15, 26, 48, 87, 161, 299, 563, 1066, 2030, 3885, 7464, 14384, 27779, 53782, 104359, 202838, 394860, 769777, 1502603, 2936519, 5744932, 11249805, 22048769, 43248623, 84894767, 166758141, 327770275, 644627310, 1268491353, 2497412741 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Pontus von BrÃ¶mssen, Table of n, a(n) for n = 0..37 (terms 0..35 from Ray Chandler) D. Borwein, J. M. Borwein, P. B. Borwein, R. Girgensohn, Giuga's Conjecture on Primality, Am. Math. Monthly 103 (1) (1996), 40-50. D. Shanks and L. P. Schmid, Variations on a theorem of Landau. Part I, Math. Comp., 20 (1966), 551-569. EXAMPLE There are 5 integers <= 2^3 of form x^2 - 2y^2. The five (x,y) pairs (1,0), (2,1), (2,0), (3,1), (4,2) give respectively: 1, 2, 4, 7, 8. So a(3) = 5. - Bernard Schott, Feb 10 2019 MATHEMATICA cnt=0; n=0; Table[n++; While[{p, e}=Transpose[FactorInteger[n]]; If[Select[p^e, MemberQ[{3, 5}, Mod[ #, 8]] &] == {}, cnt++ ]; n<2^k, n++ ]; cnt, {k, 0, 20}] (* T. D. Noe, Jan 19 2009 *) PROG (PARI) A000047(n)={ local(f, c=0); for(m=1, 2^n, for(i=1, #f=factor(m)~, abs(f[1, i]%8-4)==1 || next; f[2, i]%2 & next(2)); c++); c} \\ See comment in A035251: m=3 or 5 mod 8; M. F. Hasler, Jan 19 2009 CROSSREFS Cf. A035251. Sequence in context: A006982 A054539 A026702 * A101172 A192677 A307909 Adjacent sequences:  A000044 A000045 A000046 * A000048 A000049 A000050 KEYWORD nonn AUTHOR EXTENSIONS More terms from Giovanni Resta and Harry J. Smith, Jan 24 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 02:22 EDT 2020. Contains 337175 sequences. (Running on oeis4.)