OFFSET
0,5
COMMENTS
Also, number of "twills" (Grünbaum and Shephard). - N. J. A. Sloane, Oct 21 2015
REFERENCES
B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Christian G. Bower, Table of n, a(n) for n = 0..1000
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
J. E. Iglesias, A formula for the number of closest packings of equal spheres having a given repeat period, Z. Krist. 155 (1981) 121-127, Table 1.
Sara Jensen, Sequence knitting, J. Math. Arts (2023).
Karyn McLellan, Periodic coefficients and random Fibonacci sequences, Electronic Journal of Combinatorics, 20(4), 2013, #P32.
FORMULA
EXAMPLE
For a(7)=8, there are seven achiral set partitions (0000001, 0000011, 0000101, 0000111, 0001001, 0010011, 0010101) and one chiral pair (0001011-0001101). - Robert A. Russell, Jun 19 2019
MAPLE
MATHEMATICA
a11[0] = 1; a11[n_] := 2^Floor[n/2]/2 + Sum[EulerPhi[2*d]*2^(n/d), {d, Divisors[n]}]/n/4; a[0] = 1; a[n_] := Sum[MoebiusMu[d]*a11[n/d], {d, Divisors[n]}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2012, from formula *)
Join[{1}, Table[(DivisorSum[NestWhile[#/2 &, n, EvenQ], MoebiusMu[#] 2^(n/#) &]/(2 n) + DivisorSum[n, MoebiusMu[n/#] 2^Floor[#/2] &])/2, {n, 1, 40}]] (* Robert A. Russell, Jun 19 2019 *)
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved