login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000046
Number of primitive n-bead necklaces (turning over is allowed) where complements are equivalent.
(Formerly M0696 N0257)
13
1, 1, 1, 1, 2, 3, 5, 8, 14, 21, 39, 62, 112, 189, 352, 607, 1144, 2055, 3885, 7154, 13602, 25472, 48670, 92204, 176770, 337590, 649341, 1246840, 2404872, 4636389, 8964143, 17334800, 33587072, 65107998, 126387975, 245492232, 477349348
OFFSET
0,5
COMMENTS
Also, number of "twills" (Grünbaum and Shephard). - N. J. A. Sloane, Oct 21 2015
REFERENCES
B. Grünbaum and G. C. Shephard, The geometry of fabrics, pp. 77-98 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
Sara Jensen, Sequence knitting, J. Math. Arts (2023).
Karyn McLellan, Periodic coefficients and random Fibonacci sequences, Electronic Journal of Combinatorics, 20(4), 2013, #P32.
FORMULA
a(n) = Sum_{ d divides n } mu(d)*A000011(n/d).
From Robert A. Russell, Jun 19 2019: (Start)
a(n) = ((1/(2n))Sum_{odd d|n} mu(d)*2^(n/d) + Sum_{d|n} mu(n/d)*2^floor(d/2)) / 2.
a(n) = A000048(n) - A308706(n) = (A000048(n) + A179781(n))/2 = A308706(n) + A179781(n).
A000011(n) = Sum_{d|n} a(d). (End)
EXAMPLE
For a(7)=8, there are seven achiral set partitions (0000001, 0000011, 0000101, 0000111, 0001001, 0010011, 0010101) and one chiral pair (0001011-0001101). - Robert A. Russell, Jun 19 2019
MAPLE
with(numtheory); A000046 := proc(n) local s, d; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*A000011(n/d); od; RETURN(s); fi; end;
MATHEMATICA
a11[0] = 1; a11[n_] := 2^Floor[n/2]/2 + Sum[EulerPhi[2*d]*2^(n/d), {d, Divisors[n]}]/n/4; a[0] = 1; a[n_] := Sum[MoebiusMu[d]*a11[n/d], {d, Divisors[n]}]; Table[a[n], {n, 0, 36}] (* Jean-François Alcover, Jul 10 2012, from formula *)
Join[{1}, Table[(DivisorSum[NestWhile[#/2 &, n, EvenQ], MoebiusMu[#] 2^(n/#) &]/(2 n) + DivisorSum[n, MoebiusMu[n/#] 2^Floor[#/2] &])/2, {n, 1, 40}]] (* Robert A. Russell, Jun 19 2019 *)
CROSSREFS
Similar to A000011, but counts primitive necklaces.
A000048 (oriented), A308706 (chiral), A179781 (achiral).
Cf. A054199.
Sequence in context: A306912 A212607 A056366 * A293641 A293553 A131132
KEYWORD
nonn,easy,nice
STATUS
approved