login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306912
a(n) = 1 + Sum_{k=1..n} Sum_{d|k} mu(k/d)*p(d), where p(d) = number of partitions of d (A000041).
0
1, 2, 3, 5, 8, 14, 21, 35, 52, 79, 113, 168, 231, 331, 450, 617, 826, 1122, 1469, 1958, 2540, 3315, 4260, 5514, 6995, 8946, 11280, 14260, 17840, 22404, 27790, 34631, 42749, 52834, 64846, 79708, 97234, 118870, 144394, 175476, 212170, 256752, 309007, 372267, 446437, 535368
OFFSET
0,2
COMMENTS
Partial sums of A000837.
FORMULA
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(3/2)*Pi*sqrt(n)). - Vaclav Kotesovec, Mar 17 2019
MATHEMATICA
Table[1 + Sum[Sum[MoebiusMu[k/d] PartitionsP[d], {d, Divisors[k]}], {k, 1, n}], {n, 0, 45}]
PROG
(PARI) a(n) = 1 + sum(k=1, n, sumdiv(k, d, moebius(k/d)*numbpart(d))); \\ Michel Marcus, Mar 16 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 16 2019
STATUS
approved