login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306911
Expansion of Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j)^j.
1
1, 1, 1, 0, 1, 1, 2, 2, 1, 2, 1, 2, 5, 4, 7, 9, 7, 10, 9, 9, 13, 13, 18, 27, 31, 42, 53, 61, 71, 83, 95, 98, 115, 131, 147, 176, 207, 258, 313, 395, 481, 581, 721, 848, 1014, 1179, 1367, 1586, 1804, 2064, 2338, 2698, 3083, 3559, 4142, 4819, 5732, 6768, 8036, 9582, 11426
OFFSET
0,7
LINKS
MAPLE
N:= 100:
S:= series(add(x^(k^2)*mul((1+x^j)^j, j=1..min(k, N-k^2)), k=0..floor(sqrt(N))), x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Apr 10 2019
MATHEMATICA
nmax = 60; CoefficientList[Series[Sum[x^(k^2) Product[(1 + x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 16 2019
STATUS
approved