

A318771


Expansion of Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1  x^j)^j.


3



1, 1, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 22, 25, 37, 47, 64, 81, 113, 140, 191, 243, 319, 408, 540, 677, 889, 1132, 1462, 1855, 2404, 3034, 3909, 4946, 6325, 7997, 10202, 12840, 16328, 20549, 25989, 32627, 41180, 51577, 64872, 81128, 101729, 127016, 158913, 197981, 247163, 307523, 383019
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

Table of n, a(n) for n=0..52.


MAPLE

a:=series(add(x^(k^2)/mul((1x^j)^j, j=1..k), k=0..100), x=0, 53): seq(coeff(a, x, n), n=0..52); # Paolo P. Lava, Apr 02 2019


MATHEMATICA

nmax = 52; CoefficientList[Series[Sum[x^k^2/Product[(1  x^j)^j, {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]


CROSSREFS

Cf. A193197, A206100, A206138, A318770.
Sequence in context: A187219 A317785 A014810 * A239835 A026929 A206560
Adjacent sequences: A318768 A318769 A318770 * A318772 A318773 A318774


KEYWORD

nonn


AUTHOR

Ilya Gutkovskiy, Sep 03 2018


STATUS

approved



