login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193197
G.f.: A(x) = Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^k)^n.
1
1, 1, 1, 1, 2, 3, 6, 9, 15, 22, 34, 50, 78, 119, 188, 295, 466, 728, 1134, 1742, 2659, 4018, 6037, 9018, 13443, 19993, 29749, 44274, 65976, 98372, 146781, 218922, 326290, 485476, 720817, 1067293, 1575713, 2318852, 3401845, 4975174, 7255629, 10553845, 15317091
OFFSET
0,5
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 9*x^7 +...
where:
A(x) = 1 + x/(1-x) + x^4/((1-x)*(1-x^2))^2 + x^9/((1-x)*(1-x^2)*(1-x^3))^3 + x^16/((1-x)*(1-x^2)*(1-x^3)*(1-x^4))^4 +...
PROG
(PARI) {a(n)=local(A=1); polcoeff(sum(m=0, n, x^(m^2)/prod(k=1, m, 1-x^k +x*O(x^n))^m), n)}
CROSSREFS
Sequence in context: A086642 A308930 A304620 * A308995 A326470 A326595
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 17 2011
STATUS
approved