login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326470 Sum of the fourth largest parts of the partitions of n into 9 parts. 9
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 9, 15, 22, 35, 50, 73, 101, 145, 196, 270, 360, 484, 632, 832, 1069, 1382, 1755, 2229, 2794, 3508, 4346, 5384, 6608, 8101, 9847, 11960, 14413, 17354, 20760, 24791, 29444, 34923, 41201, 48535, 56926, 66654, 77731 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

LINKS

Table of n, a(n) for n=0..50.

Index entries for sequences related to partitions

FORMULA

a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} k.

a(n) = A326464(n) - A326465(n) - A326466(n) - A326467(n) - A326468(n) - A326469(n) - A326471(n) - A326472(n) - A326473(n).

MATHEMATICA

Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[k, {i, j, Floor[(n - j - k - l - m - o - p - q)/2]}], {j, k, Floor[(n - k - l - m - o - p - q)/3]}], {k, l, Floor[(n - l - m - o - p - q)/4]}], {l, m, Floor[(n - m - o - p - q)/5]}], {m, o, Floor[(n - o - p - q)/6]}], {o, p, Floor[(n - p - q)/7]}], {p, q, Floor[(n - q)/8]}], {q, Floor[n/9]}], {n, 0, 50}]

CROSSREFS

Cf. A026815, A326464, A326465, A326466, A326467, A326468, A326469, A326471, A326472, A326473.

Sequence in context: A304620 A193197 A308995 * A326595 A217067 A014214

Adjacent sequences:  A326467 A326468 A326469 * A326471 A326472 A326473

KEYWORD

nonn

AUTHOR

Wesley Ivan Hurt, Jul 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 16:31 EDT 2020. Contains 333089 sequences. (Running on oeis4.)