login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326595 Sum of the fourth largest parts of the partitions of n into 10 parts. 10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 9, 15, 22, 35, 50, 75, 103, 149, 202, 281, 376, 510, 669, 889, 1149, 1499, 1913, 2453, 3093, 3917, 4886, 6106, 7544, 9330, 11419, 13989, 16979, 20614, 24837, 29912, 35785, 42790, 50857, 60399, 71360, 84233, 98952 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,13

LINKS

Table of n, a(n) for n=0..51.

Index entries for sequences related to partitions

FORMULA

a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} k.

a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326596(n) - A326597(n) - A326598(n).

MATHEMATICA

Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[k, {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}]

CROSSREFS

Cf. A026816, A326588, A326589, A326590, A326591, A326592, A326593, A326594, A326596, A326597, A326598.

Sequence in context: A193197 A308995 A326470 * A217067 A014214 A094993

Adjacent sequences:  A326592 A326593 A326594 * A326596 A326597 A326598

KEYWORD

nonn

AUTHOR

Wesley Ivan Hurt, Jul 13 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 4 20:47 EDT 2020. Contains 333229 sequences. (Running on oeis4.)