login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326597
Sum of the second largest parts of the partitions of n into 10 parts.
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 10, 15, 27, 39, 63, 91, 137, 190, 277, 376, 525, 704, 956, 1255, 1671, 2160, 2818, 3599, 4616, 5819, 7369, 9187, 11480, 14179, 17527, 21441, 26256, 31851, 38649, 46543, 56022, 66980, 80050, 95083, 112860, 133266
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} i.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326593(n) - A326594(n) - A326595(n) - A326596(n) - A326598(n).
MATHEMATICA
Table[Total[IntegerPartitions[n, {10}][[;; , 2]]], {n, 0, 50}] (* Harvey P. Dale, Nov 19 2023 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved