login
A326593
Sum of the sixth largest parts of the partitions of n into 10 parts.
10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 26, 37, 54, 73, 104, 139, 191, 253, 340, 442, 584, 749, 970, 1232, 1571, 1971, 2486, 3087, 3844, 4734, 5835, 7119, 8699, 10530, 12753, 15332, 18426, 21998, 26259, 31153, 36938, 43575, 51360, 60250
OFFSET
0,13
FORMULA
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} m.
a(n) = A326588(n) - A326589(n) - A326590(n) - A326591(n) - A326592(n) - A326594(n) - A326595(n) - A326596(n) - A326597(n) - A326598(n).
MATHEMATICA
Table[Total[IntegerPartitions[n, {10}][[All, 6]]], {n, 0, 60}] (* Harvey P. Dale, Dec 20 2020 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 13 2019
STATUS
approved