This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A308928 Sum of the sixth largest parts in the partitions of n into 7 parts. 7
 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 24, 33, 46, 61, 84, 109, 144, 184, 237, 298, 379, 470, 585, 719, 882, 1069, 1300, 1560, 1873, 2230, 2653, 3129, 3694, 4326, 5063, 5892, 6848, 7917, 9147, 10513, 12071, 13804, 15765, 17935, 20389, 23088, 26118 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 LINKS FORMULA a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3} Sum_{i=j..floor((n-j-k-l-m-o)/2)} m. a(n) = A308926(n) - A308927(n) - A308929(n) - A308930(n) - A308931(n) - A308932(n) - A308933(n). MATHEMATICA Table[Sum[Sum[Sum[Sum[Sum[Sum[m, {i, j, Floor[(n - j - k - l - m - o)/2]}], {j, k, Floor[(n - k - l - m - o)/3]}], {k, l, Floor[(n - l - m - o)/4]}], {l, m, Floor[(n - m - o)/5]}], {m, o, Floor[(n - o)/6]}], {o, Floor[n/7]}], {n, 0, 50}] CROSSREFS Cf. A026813, A308926, A308927, A308929, A308930, A308931, A308932, A308933. Sequence in context: A326083 A027959 A060730 * A308992 A326468 A326593 Adjacent sequences:  A308925 A308926 A308927 * A308929 A308930 A308931 KEYWORD nonn AUTHOR Wesley Ivan Hurt, Jun 30 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 18:19 EST 2019. Contains 329925 sequences. (Running on oeis4.)