login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308925
Sum of the largest parts in the partitions of n into 6 primes.
7
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 3, 8, 8, 15, 20, 17, 24, 35, 42, 50, 66, 61, 92, 102, 122, 129, 180, 150, 237, 233, 296, 260, 370, 300, 463, 398, 521, 467, 708, 527, 845, 667, 935, 768, 1158, 839, 1372, 1039, 1547, 1233, 1898, 1294, 2217, 1612
OFFSET
0,13
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m) * (n-i-j-k-l-m), where c = A010051.
a(n) = A308919(n) - A308920(n) - A308921(n) - A308922(n) - A308923(n) - A308924(n).
MAPLE
N:= proc(m, k, n) option remember;
local q, t;
if m = 1 then if k=n and isprime(k) then return 1
else return 0
fi fi;
if m*k < n then return 0 fi;
t:= 0;
q:= ceil((n-k)/(m-1))-1;
do
q:= nextprime(q);
if q > min(k, n-k) then return t fi;
t:= t + procname(m-1, q, n-k)
od;
end proc:
F:= proc(n) local p, q, t;
p:= ceil(n/6)-1;
t:= 0;
do
p:= nextprime(p);
if p >= n then return t fi;
q:= ceil((n-p)/5)-1;
do
q:= nextprime(q);
if q > min(p, n-p) then break fi;
t:= t + p*N(5, q, n-p);
od
od
end proc:
map(F, [$0..100]); # Robert Israel, Jul 02 2019
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[(n - i - j - k - l - m)*(PrimePi[i] - PrimePi[i - 1]) (PrimePi[j] - PrimePi[j - 1]) (PrimePi[k] - PrimePi[k - 1]) (PrimePi[l] - PrimePi[l - 1]) (PrimePi[m] - PrimePi[m - 1]) (PrimePi[n - i - j - k - l - m] - PrimePi[n - i - j - k - l - m - 1]), {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 30 2019
STATUS
approved