login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211879
Decimal expansion of constant C such that 1 = Sum_{k>=1} 1/C^(k^3).
0
1, 2, 3, 3, 8, 8, 8, 1, 4, 0, 3, 3, 7, 2, 7, 4, 1, 8, 8, 7, 5, 3, 5, 4, 7, 9, 2, 7, 3, 0, 8, 8, 6, 4, 1, 1, 5, 5, 0, 4, 7, 8, 2, 1, 4, 0, 1, 0, 9, 1, 2, 4, 2, 8, 9, 3, 1, 7, 6, 7, 7, 4, 8, 4, 5, 0, 7, 9, 9, 9, 0, 5, 6, 1, 9, 7, 8, 0, 3, 7, 4, 5, 5, 2, 7, 0, 9, 4, 0, 7, 6, 3, 9, 5, 5, 0, 8, 0, 1, 0, 8, 5, 8, 5, 0, 8, 6, 5, 6, 3, 7, 0, 1, 2, 5, 4
OFFSET
1,2
EXAMPLE
C = 1.2338881403372741887535479273...
MAPLE
Digits:= 120:
s:= convert(fsolve(sum(1/C^(k^3), k=1..infinity)=1, C=2)/10, string):
seq(parse(s[n+1]), n=1..116); # Alois P. Heinz, Feb 13 2013
MATHEMATICA
digits = 116; f[x_?NumericQ] := NSum[1/x^(k^3), {k, 1, Infinity}, WorkingPrecision -> digits]; x /. FindRoot[f[x] == 1, {x, 3/2, 1, 2}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 20 2014 *)
CROSSREFS
Sequence in context: A330048 A210752 A210599 * A308774 A308859 A308925
KEYWORD
cons,nonn
AUTHOR
Balarka Sen and Jimmy Zotos, Feb 13 2013
EXTENSIONS
More terms from Alois P. Heinz, Feb 13 2013
STATUS
approved