login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211878
Decimal expansion of positive constant C such that 1 = Sum_{k>=1} 1/C^(2^k).
0
1, 3, 2, 9, 0, 5, 9, 1, 0, 8, 7, 4, 9, 5, 5, 9, 5, 6, 4, 6, 0, 9, 9, 1, 6, 8, 2, 6, 7, 9, 2, 4, 3, 6, 2, 5, 1, 9, 4, 9, 7, 7, 6, 5, 9, 3, 8, 8, 4, 1, 8, 2, 8, 7, 8, 7, 3, 4, 2, 2, 9, 8, 5, 0, 2, 7, 3, 0, 4, 0, 8, 5, 4, 4, 9, 2, 0, 4, 4, 7, 6, 3, 4, 8, 0, 3, 8, 3, 8, 2, 7, 7, 9, 7, 8, 1, 9, 1, 2, 2, 9, 6, 8, 0, 1, 9, 3, 2, 3, 8, 6, 6
OFFSET
1,2
EXAMPLE
C = 1.3290591087495595646...
MAPLE
Digits:= 120:
s:= convert(fsolve(sum(1/C^(2^k), k=1..infinity)=1, C=1)/10, string):
seq(parse(s[n+1]), n=1..112);
MATHEMATICA
digits = 112; f[x_?NumericQ] := NSum[1/x^(2^k), {k, 1, Infinity}, WorkingPrecision -> digits]; x /. FindRoot[f[x] == 1, {x, 3/2, 1, 2}, WorkingPrecision -> digits] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 20 2014 *)
CROSSREFS
Sequence in context: A110866 A257958 A329285 * A340461 A060481 A335228
KEYWORD
cons,nonn
AUTHOR
Jimmy Zotos and Balarka Sen, Feb 13 2013
EXTENSIONS
More terms from Alois P. Heinz, Feb 13 2013
STATUS
approved