login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211880
Number of permutations of n elements with no fixed points and largest cycle of length 3.
2
0, 0, 0, 2, 0, 20, 40, 210, 1120, 4760, 25200, 157850, 800800, 5345340, 35035000, 222472250, 1648046400, 12000388400, 88529240800, 720929459250, 5786188408000, 48072795270500, 424300329453000, 3731123025279650, 34083741984292000, 323768324084205000
OFFSET
0,4
COMMENTS
a(n) = A055814(n) - A123023(n). - Vaclav Kotesovec, Oct 09 2013
LINKS
FORMULA
E.g.f.: (exp(x^3/3)-1) * exp(x^2/2).
Recurrence: (n-3)*a(n) = (n-1)*(2*n-5)*a(n-2) + (n-3)*(n-2)*(n-1)*a(n-3) - (n-3)*(n-2)*(n-1)*a(n-4) - (n-4)*(n-3)*(n-2)*(n-1)*a(n-5). - Vaclav Kotesovec, Oct 09 2013
EXAMPLE
a(3) = 2: (2,3,1), (3,1,2).
MAPLE
egf:= (exp(x^3/3)-1)*exp(x^2/2):
a:= n-> n! *coeff(series(egf, x, n+1), x, n):
seq(a(n), n=0..30);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1,
Sum[Product[n - i, {i, 1, j - 1}] A[n - j, k], {j, 2, k}]]];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
a[n_] := T[n, 3];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 03 2021, after Alois P. Heinz in A211871 *)
CROSSREFS
Column k=3 of A211871.
Sequence in context: A139003 A264881 A280622 * A365862 A209868 A182661
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 13 2013
STATUS
approved