OFFSET
0,10
COMMENTS
From Steven Finch, Sep 27 2021: (Start)
A permutation without fixed points is called a derangement.
For the statistic "length of the smallest cycle", see A348075. (End)
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413--432.
FORMULA
E.g.f. of column k>1: (exp(x^k/k)-1) * exp(Sum_{j=2..k-1} x^j/j); e.g.f. of column k<=1: 1-k.
EXAMPLE
T(0,0) = 1: (), the empty permutation.
T(2,2) = 1: (2,1).
T(3,3) = 2: (2,3,1), (3,1,2).
T(4,2) = 3: (2,1,4,3), (3,4,1,2), (4,3,2,1).
T(4,4) = 6: (2,4,1,3), (2,3,4,1), (3,1,4,2), (3,4,2,1), (4,1,2,3), (4,3,1,2).
Triangle T(n,k) begins:
1;
0, 0;
0, 0, 1;
0, 0, 0, 2;
0, 0, 3, 0, 6;
0, 0, 0, 20, 0, 24;
0, 0, 15, 40, 90, 0, 120;
0, 0, 0, 210, 420, 504, 0, 720;
0, 0, 105, 1120, 2520, 2688, 3360, 0, 5040;
...
MAPLE
A:= proc(n, k) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*A(n-j, k), j=2..k)))
end:
T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n < 0, 0, If[n == 0, 1,
Sum[Product[n-i, {i, 1, j-1}]*A[n-j, k], {j, 2, k}]]];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k-1]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 12 2013
STATUS
approved