login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348075
Triangular array read by rows: T(n,k) is the number of derangements whose shortest cycle has exactly k nodes; n >= 1, 1 <= k <= n.
1
0, 0, 1, 0, 0, 2, 0, 3, 0, 6, 0, 20, 0, 0, 24, 0, 105, 40, 0, 0, 120, 0, 714, 420, 0, 0, 0, 720, 0, 5845, 2688, 1260, 0, 0, 0, 5040, 0, 52632, 22400, 18144, 0, 0, 0, 0, 40320, 0, 525105, 223200, 151200, 72576, 0, 0, 0, 0, 362880, 0, 5777090, 2522520, 1425600, 1330560, 0, 0, 0, 0, 0, 3628800
OFFSET
1,6
COMMENTS
For the statistic "length of the longest cycle", see A211871.
LINKS
Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
FORMULA
T(n,n) = A000142(n-1), n >= 2.
T(n,2) = A158243(n), n >= 2.
T(n,k) = A145877(n,k) for k >= 2.
EXAMPLE
Triangle begins:
0;
0, 1;
0, 0, 2;
0, 3, 0, 6;
0, 20, 0, 0, 24;
0, 105, 40, 0, 0, 120;
0, 714, 420, 0, 0, 0, 720;
0, 5845, 2688, 1260, 0, 0, 0, 5040;
0, 52632, 22400, 18144, 0, 0, 0, 0, 40320;
...
MAPLE
b:= proc(n, m) option remember; `if`(n=0, x^m, add((j-1)!*
b(n-j, min(m, j))*binomial(n-1, j-1), j=2..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..12); # Alois P. Heinz, Sep 27 2021
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[(j - 1)!*
b[n - j, Min[m, j]]*Binomial[n - 1, j - 1], {j, 2, n}]];
T[n_] := If[n == 1, {0}, CoefficientList[b[n, n], x] // Rest];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Oct 03 2021, after Alois P. Heinz *)
CROSSREFS
Row sums give A000166, n >= 1.
Right border gives A000142.
Column 1 gives A000004.
Column 2 gives A158243.
Sequence in context: A082857 A208092 A081155 * A130628 A249431 A331176
KEYWORD
nonn,tabl
AUTHOR
Steven Finch, Sep 27 2021
STATUS
approved