login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348077
Starts of runs of 3 consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039).
4
603, 1250, 1323, 2523, 4203, 4923, 4948, 7442, 10467, 12591, 18027, 20402, 21123, 23823, 31507, 31850, 36162, 40327, 54475, 54511, 55323, 58923, 63747, 64386, 71523, 73204, 79011, 83151, 85291, 88047, 97675, 103923, 104211, 118323, 120787, 122571, 124891, 126927
OFFSET
1,1
LINKS
EXAMPLE
603 is a term since 603 = 3^2 * 67, 603 + 1 = 604 = 2^2 * 151 and 603 + 2 = 605 = 5 * 11^2 all have one even and one odd exponent in their prime factorization.
MATHEMATICA
q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), _?OddQ] == Count[e, _?EvenQ]; v = q /@ Range[3]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 2]], {k, 4, 130000}]; seq
PROG
(Python)
from sympy import factorint
def aupto(limit):
alst, condvec = [], [False, False, False]
for kp2 in range(4, limit+3):
evenodd = [0, 0]
for e in factorint(kp2).values():
evenodd[e%2] += 1
condvec = condvec[1:] + [evenodd[0] == evenodd[1]]
if all(condvec):
alst.append(kp2-2)
return alst
print(aupto(126927)) # Michael S. Branicky, Sep 27 2021
CROSSREFS
Subsequence of A187039 and A348076.
Sequence in context: A218521 A145331 A252957 * A066785 A178032 A107256
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 27 2021
STATUS
approved