login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348078
Starts of runs of 4 consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039).
3
906596, 1141550, 1243275, 12133673, 13852924, 19293209, 20738672, 22997761, 23542001, 26587348, 30731822, 31237450, 39987773, 41419024, 43627148, 54040975, 54652148, 56487148, 70289225, 75855625, 77449300, 79677772, 80665072, 82126448, 91420721, 93883850, 95162849
OFFSET
1,1
LINKS
EXAMPLE
906596 is a term since 906596 = 2^2 * 226649, 906596 + 1 = 906597 = 3^2 * 100733, 906596 + 2 = 906598 = 2 * 7^2 * 11 * 29^2 and 906596 + 3 = 906599 = 71 * 113^2 all have an equal number of even and odd exponents in their prime factorization.
MATHEMATICA
q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), _?OddQ] == Count[e, _?EvenQ]; v = q /@ Range[4]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 3]], {k, 5, 2*10^7}]; seq
PROG
(Python)
from sympy import factorint
def cond(n):
evenodd = [0, 0]
for e in factorint(n).values():
evenodd[e%2] += 1
return evenodd[0] == evenodd[1]
def afind(limit, startk=5):
condvec = [cond(startk+i) for i in range(4)]
for kp3 in range(startk+3, limit+4):
condvec = condvec[1:] + [cond(kp3)]
if all(condvec):
print(kp3-3, end=", ")
afind(125*10**4) # Michael S. Branicky, Sep 27 2021
CROSSREFS
Subsequence of A187039, A348076 and A348077.
Sequence in context: A251520 A250542 A251799 * A348101 A179735 A015333
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 27 2021
STATUS
approved