login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348079
Starts of runs of 5 consecutive numbers that have an equal number of even and odd exponents in their prime factorization (A187039).
0
792007675, 2513546971, 2820448771, 3201296272, 4742326672, 4894282924, 5462510272, 5664816448, 6947006272, 7814337424, 8784450448, 9085360624, 10147712524, 10246365547, 11537724975, 11861786572, 11907710548, 12456672496, 13338112048, 13510075471, 13931933948
OFFSET
1,1
EXAMPLE
792007675 is a term since 792007675 = 2^2 * 31680307, 792007675 + 1 = 792007676 = 2^2 * 198001919, 792007675 + 2 = 792007677 = 3^2 * 88000853, 792007675 + 3 = 792007678 = 2 * 7^2 * 11^2 * 66791 and 792007675 + 4 = 792007679 = 17^2 * 2740511 all have an equal number of even and odd exponents in their prime factorization.
MATHEMATICA
q[n_] := n == 1 || Count[(e = FactorInteger[n][[;; , 2]]), _?OddQ] == Count[e, _?EvenQ]; v = q /@ Range[5]; seq = {}; Do[v = Append[Drop[v, 1], q[k]]; If[And @@ v, AppendTo[seq, k - 4]], {k, 6, 3*10^9}]; seq
PROG
(Python)
from sympy import factorint
def cond(n):
evenodd = [0, 0]
for e in factorint(n).values():
evenodd[e%2] += 1
return evenodd[0] == evenodd[1]
def afind(limit, startk=6):
condvec = [cond(startk+i) for i in range(5)]
for kp4 in range(startk+4, limit+5):
condvec = condvec[1:] + [cond(kp4)]
if all(condvec):
print(kp4-4, end=", ")
afind(10**9) # Michael S. Branicky, Sep 27 2021
CROSSREFS
Subsequence of A187039, A348076, A348077 and A348078.
Sequence in context: A344730 A225389 A166121 * A046186 A166227 A104829
KEYWORD
nonn
AUTHOR
Amiram Eldar, Sep 27 2021
STATUS
approved