login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344730
Numbers that are the sum of three fourth powers in exactly seven ways.
6
779888018, 12478208288, 33038379458, 63170929458, 114872872562, 199651332608, 329296962722, 393006728738, 419200136082, 487430011250, 528614071328, 959702600738, 1010734871328, 1369390032738, 1502549262242, 1525400097858, 1653983981762, 1668273965442, 1756039197458, 1793250582818, 1837965960992, 1912768493202
OFFSET
1,1
COMMENTS
Differs from A344729 at term 2 because 5745705602 3^4+ 230^4+ 233^4 = 25^4+ 218^4+ 243^4 = 43^4+ 207^4+ 250^4 = 58^4+ 197^4+ 255^4 = 85^4+ 177^4+ 262^4 = 90^4+ 173^4+ 263^4 = 102^4+ 163^4+ 265^4 = 122^4+ 145^4+ 267^4
LINKS
EXAMPLE
779888018 is a term because 779888018 = 3^4+ 139^4+ 142^4 = 9^4+ 38^4+ 167^4 = 14^4+ 133^4+ 147^4 = 43^4+ 114^4+ 157^4 = 47^4+ 111^4+ 158^4 = 63^4+ 98^4+ 161^4 = 73^4+ 89^4+ 162^4
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**4 for x in range(1, 1000)]
for pos in cwr(power_terms, 3):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v == 7])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved