OFFSET
1,4
COMMENTS
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
FORMULA
E.g.f. for column k is (1-exp(-x^k/k))*exp( -sum(j=1..k-1, x^j/j ) ) / (1-x). - Vladeta Jovovic
EXAMPLE
T(4,2)=3 because we have 3412=(13)(24), 2143=(12)(34) and 4321=(14)(23).
Triangle starts:
1;
1, 1;
4, 0, 2;
15, 3, 0, 6;
76, 20, 0, 0, 24;
455, 105, 40, 0, 0, 120;
3186, 714, 420, 0, 0, 0, 720;
25487, 5845, 2688, 1260, 0, 0, 0, 5040;
...
MAPLE
F:=proc(k) options operator, arrow: (1-exp(-x^k/k))*exp(-(sum(x^j/j, j = 1 .. k-1)))/(1-x) end proc: for k to 16 do g[k]:= series(F(k), x=0, 16) end do: T:= proc(n, k) options operator, arrow: factorial(n)*coeff(g[k], x, n) end proc: for n to 11 do seq(T(n, k), k=1..n) end do; # yields sequence in triangular form
MATHEMATICA
Rest[Transpose[Table[Range[0, 16]! CoefficientList[
Series[(Exp[x^n/n] -1) (Exp[-Sum[x^k/k, {k, 1, n}]]/(1 - x)), {x, 0, 16}], x], {n, 1, 8}]]] // Grid (* Geoffrey Critzer, Mar 04 2011 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 27 2008
STATUS
approved