login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145877
Triangle read by rows: T(n,k) is the number of permutations of [n] for which the shortest cycle length is k (1<=k<=n).
14
1, 1, 1, 4, 0, 2, 15, 3, 0, 6, 76, 20, 0, 0, 24, 455, 105, 40, 0, 0, 120, 3186, 714, 420, 0, 0, 0, 720, 25487, 5845, 2688, 1260, 0, 0, 0, 5040, 229384, 52632, 22400, 18144, 0, 0, 0, 0, 40320, 2293839, 525105, 223200, 151200, 72576, 0, 0, 0, 0, 362880, 25232230
OFFSET
1,4
COMMENTS
Row sums are the factorials (A000142).
Sum(T(n,k), k=2..n) = A000166(n) (the derangement numbers).
T(n,1) = A002467(n).
T(n,n) = (n-1)! (A000142).
Sum(k*T(n,k),k=1..n) = A028417(n).
For the statistic "length of the longest cycle", see A126074.
LINKS
Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
FORMULA
E.g.f. for column k is (1-exp(-x^k/k))*exp( -sum(j=1..k-1, x^j/j ) ) / (1-x). - Vladeta Jovovic
EXAMPLE
T(4,2)=3 because we have 3412=(13)(24), 2143=(12)(34) and 4321=(14)(23).
Triangle starts:
1;
1, 1;
4, 0, 2;
15, 3, 0, 6;
76, 20, 0, 0, 24;
455, 105, 40, 0, 0, 120;
3186, 714, 420, 0, 0, 0, 720;
25487, 5845, 2688, 1260, 0, 0, 0, 5040;
...
MAPLE
F:=proc(k) options operator, arrow: (1-exp(-x^k/k))*exp(-(sum(x^j/j, j = 1 .. k-1)))/(1-x) end proc: for k to 16 do g[k]:= series(F(k), x=0, 16) end do: T:= proc(n, k) options operator, arrow: factorial(n)*coeff(g[k], x, n) end proc: for n to 11 do seq(T(n, k), k=1..n) end do; # yields sequence in triangular form
MATHEMATICA
Rest[Transpose[Table[Range[0, 16]! CoefficientList[
Series[(Exp[x^n/n] -1) (Exp[-Sum[x^k/k, {k, 1, n}]]/(1 - x)), {x, 0, 16}], x], {n, 1, 8}]]] // Grid (* Geoffrey Critzer, Mar 04 2011 *)
CROSSREFS
T(2n,n) gives A110468(n-1) (for n>0). - Alois P. Heinz, Apr 21 2017
Sequence in context: A134895 A318468 A346492 * A373984 A283572 A057075
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 27 2008
STATUS
approved