login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145879
Triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having exactly k entries that are midpoints of 321 patterns (0 <= k <= n-2 for n >= 2; k=0 for n=1).
5
1, 2, 5, 1, 14, 8, 2, 42, 46, 26, 6, 132, 232, 220, 112, 24, 429, 1093, 1527, 1275, 596, 120, 1430, 4944, 9436, 11384, 8638, 3768, 720, 4862, 21778, 54004, 87556, 95126, 66938, 27576, 5040, 16796, 94184, 292704, 608064, 880828, 882648, 584008, 229248
OFFSET
1,2
COMMENTS
In a permutation p of {1,2,...,n}, the entry p(i) is the midpoint of a 321 pattern (i.e., of a decreasing subsequence of length 3) if and only if L(i)R(i) > 0, where L (R) is the left (right) inversion vector (table) of p. We do have R(i)+i = p(i) + L(i) for each i=1,2,...,n. (The Maple program makes use of these facts.)
Row n has n-1 entries (n>=2).
Row sums are the factorials (A000142).
Subtriangle of triangle given by (1, 1, 1, 1, 1, 1, 1, 1, ...) DELTA (0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 26 2011
LINKS
Sergey Kitaev and Jeffrey Remmel, Simple marked mesh patterns, arXiv preprint arXiv:1201.1323 [math.CO], 2012.
FORMULA
T(n,0) = A000108(n) (the Catalan numbers).
T(n,n-2) = (n-2)! for n>=2, because we have the permutations nq1, where q is any permutation of {2,3,...,n-1}.
From Peter Bala, Dec 25 2019: (Start)
The following formulas are conjectural and assume different offsets:
Recurrence for row polynomials: R(n,t) = n*t*R(n-1,t) + (1 - t)*Sum_{k = 1..n} R(k-1,t)*R(n-k,t) with R(0,t) = 1.
O.g.f. as a continued fraction: A(x,t) = 1/(1 - x/(1 - x/(1 - (1 + t)*x/( 1 - (1 + t)*x/(1 - (1 + 2*t)*x/(1 - (1 + 2*t)*x/(1 - ... ))))))) = 1 + x + 2*x^2 + (5 + t)*x^3 + (14 + 8*t + 2*t^2)*x^4 + ....
The o.g.f. A(x,t) satisfies the Riccati equation x^2*t*dA/dx = -1 + (1 - x*t)*A - x*(1 - t)*A^2.
R(n,2) = A094664(n); R(n,-1) = 2^n. (End)
Conjecture: T(n, k) = [z^k] R_1(n-1, 0) where R_1(n, q) = (q*z + 1)*R_1(n-1, q+1) + Sum_{j=0..q} R_1(n-1, j) for n > 0, q >= 0 with R_1(0, q) = 1 for q >= 0. - Mikhail Kurkov, Dec 26 2023
EXAMPLE
T(4,1) = 8 because we have 143'2, 413'2, 43'12, 42'13, 243'1, 32'14, 32'41, 342'1 (the midpoints of 321 patterns are marked).
Triangle starts:
1
2
5 1
14 8 2
42 46 26 6
132 232 220 112 24
429 1093 1527 1275 596 120
1430 4944 9436 11384 8638 3768 720
...
By the way, the triangle (1, 1, 1, 1, 1, 1, 1, ...) DELTA (0, 0, 0, 1, 1, 2, 2, 3, 3, ...) begins:
1
1, 0
2, 0, 0
5, 1, 0, 0
14, 8, 2, 0, 0,
42, 46, 26, 6, 0, 0
132, 232, 220, 112, 24, 0, 0
429, 1093, 1527, 1275, 596, 120, 0, 0
...
MAPLE
n:=7: with(combinat): P:=permute(n): f:=proc(k) local c, L, R, i: c:=0: L:= proc (j) local ct, i: ct:=0: for i to j-1 do if P[k][j] < P[k][i] then ct:=ct+1 else end if end do: ct end proc: R:=proc(j) options operator, arrow: P[k][j]+L(j)-j end proc: for i to n do if 0 < L(i) and 0 < R(i) then c:=c+1 else end if end do: c end proc: a:=[seq(f(k), k=1..factorial(n))]: for h from 0 to n-2 do c[h]:=0: for m to factorial(n) do if a[m]=h then c[h]:=c[h]+1 else end if end do end do: seq(c[h], h=0..n-2); # yields row m of the triangle, where m>=2 is the value assigned to n at the beginning of the program
MATHEMATICA
lg = 10; S1 = Array[1&, lg]; S2 = Table[{n, n}, {n, 0, lg/2 // Ceiling}] // Flatten;
DELTA[r_, s_, m_] := Module[{p, q, t, x, y}, q[k_] := x*r[[k+1]] + y*s[[k+1]]; p[0, _] = 1; p[_, -1] = 0; p[n_ /; n >= 1, k_ /; k >= 0] := p[n, k] = p[n, k-1] + q[k]*p[n-1, k+1] // Expand; t[n_, k_] := Coefficient[p[n, 0], x^(n-k)*y^k]; t[0, 0] = p[0, 0]; Table[t[n, k], {n, 0, m}, {k, 0, n}]];
DELTA[S1, S2, lg] // Rest // Flatten // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 13 2017, after Philippe Deléham *)
CROSSREFS
Diagonals give A000142, A000108, A182542, A182543. Cf. A094664, A289428.
Sequence in context: A274404 A101282 A263776 * A231210 A178978 A101895
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Oct 30 2008
STATUS
approved