login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A145881 Triangle read by rows: T(n,k) is the number of even permutations of {1,2,...,n} with no fixed points and having k excedances (n>=1; k>=1). 3
0, 0, 1, 1, 0, 3, 0, 1, 11, 11, 1, 0, 25, 80, 25, 0, 1, 57, 407, 407, 57, 1, 0, 119, 1680, 3815, 1680, 119, 0, 1, 247, 6211, 26917, 26917, 6211, 247, 1, 0, 501, 21432, 160053, 303504, 160053, 21432, 501, 0, 1, 1013, 70775, 852347, 2747009, 2747009, 852347, 70775 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,6

COMMENTS

Row n has n-1 entries (n>=2).

Sum of entries in row n = A000321(n).

Sum_{k=1..n-1} k*T(n,k) = A145887(n) (n>=2).

LINKS

Table of n, a(n) for n=1..54.

R. Mantaci and F. Rakotondrajao, Exceedingly deranging!, Advances in Appl. Math., 30 (2003), 177-188.

FORMULA

E.g.f.: ((1-t)*exp(-tz)/(1-t*exp((1-t)z)) - (t*exp(-z)-exp(-tz))/(1-t))/2.

EXAMPLE

T(4,2)=3 because the even derangements of {1,2,3,4} are 3412, 2143 and 4321.

Triangle starts:

  0;

  0;

  1,  1;

  0,  3,  0;

  1, 11, 11,  1;

  0, 25, 80, 25,  0;

MAPLE

G:=((1-t)*exp(-t*z)/(1-t*exp((1-t)*z))-(t*exp(-z)-exp(-t*z))/(1-t))*1/2: Gser:=simplify(series(G, z=0, 15)): for n to 11 do P[n]:=sort(expand(factorial(n)*coeff(Gser, z, n))) end do: 0; for n to 11 do seq(coeff(P[n], t, j), j=1..n-1) end do; # yields sequence in triangular form

CROSSREFS

Cf. A000321, A145880, A145886, A145887.

Sequence in context: A269939 A239731 A327027 * A232223 A245111 A135313

Adjacent sequences:  A145878 A145879 A145880 * A145882 A145883 A145884

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Nov 06 2008

EXTENSIONS

Formula corrected by Jon E. Schoenfield, Jul 21 2017 at the request of the author

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 06:12 EST 2022. Contains 350378 sequences. (Running on oeis4.)