login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327027
T(n, k) = (1/n) * Sum_{d|n} phi(d) * A241171(n/d, k) for n >= 1, T(0, k) = 0^k. Triangle read by rows for 0 <= k <= n.
2
1, 0, 1, 0, 1, 3, 0, 1, 10, 30, 0, 1, 33, 315, 630, 0, 1, 102, 2646, 15120, 22680, 0, 1, 348, 21135, 263340, 1039500, 1247400, 0, 1, 1170, 167310, 4118400, 32432400, 97297200, 97297200, 0, 1, 4113, 1333080, 61757010, 871620750, 4937832900, 11918907000, 10216206000
OFFSET
0,6
COMMENTS
We assume A241171 extended to its (0, 0)-based form.
EXAMPLE
[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 1, 10, 30;
[4] 0, 1, 33, 315, 630;
[5] 0, 1, 102, 2646, 15120, 22680;
[6] 0, 1, 348, 21135, 263340, 1039500, 1247400;
[7] 0, 1, 1170, 167310, 4118400, 32432400, 97297200, 97297200;
MAPLE
A327027 := (n, k)-> `if`(n=0, 1, (1/n)*add(phi(d)*A241171(n/d, k), d=divisors(n))):
seq(seq(A327027(n, k), k=0..n), n=0..6);
MATHEMATICA
A327027[0, k_] := 1;
A327027[n_, k_] := DivisorSum[n, EulerPhi[#] A241171[n/#, k] &] / n;
Table[A327027[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
PROG
(Sage) # uses[DivisorTriangle from A327029, A241171]
DivisorTriangle(euler_phi, A241171, 8, lambda n: 1/n if n > 1 else 1)
CROSSREFS
Cf. A327021 (main diagonal), A327026 (row sums), A241171, A327029.
Sequence in context: A307657 A269939 A239731 * A145881 A232223 A245111
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 20 2019
STATUS
approved