login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232223
Triangle read by rows: T(n,k) = number of connected matchings with n crossings and k chords, in a disk, k=2..n+1.
4
1, 0, 3, 0, 1, 12, 0, 0, 10, 55, 0, 0, 4, 77, 273, 0, 0, 1, 60, 546, 1428, 0, 0, 0, 35, 624, 3740, 7752, 0, 0, 0, 15, 546, 5600, 25194, 43263, 0, 0, 0, 5, 391, 6405, 46512, 168245, 246675, 0, 0, 0, 1, 240, 6125, 65076, 368676, 1118260, 1430715, 0, 0, 0, 0, 126, 5138, 76296, 606879, 2833600, 7413705, 8414640, 0, 0, 0, 0, 56, 3857, 78880, 834195, 5348420, 21312720, 49085400, 50067108
OFFSET
1,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
V. Pilaud, J. Rué, Analytic combinatorics of chord and hyperchord diagrams with k crossings, arXiv preprint arXiv:1307.6440, 2013.
EXAMPLE
Triangle begins:
1,
0,3,
0,1,12,
0,0,10,55,
0,0,4,77,273,
0,0,1,60,546,1428,
0,0,0,35,624,3740,7752,
0,0,0,15,546,5600,25194,43263,
0,0,0,5,391,6405,46512,168245,246675,
...
PROG
(PARI) \\ M(n, m) is the n-th row of A067311 truncated at m.
M(n, m)={1/(1-y+O(y*y^m))^n*sum(k=0, (sqrtint(m*8+1)-1)\2, (-1)^k * ( binomial(2*n, n-k)-binomial(2*n, n-k-1)) * y^(k*(k+1)/2) )}
T(n)={my(g=sum(k=0, n+1, M(k, n)*x^k, O(x^2*x^n)), v=Vec(sqrt((x/serreverse( x*g^2 ))))); vector(n, n, vector(n, k, polcoef(v[2+k], n)))} \\ Andrew Howroyd, Nov 22 2024
CROSSREFS
Cf. A232222 (row sums), A000699 (column sums), A322456 (transpose).
Cf. A067311.
Sequence in context: A239731 A327027 A145881 * A245111 A135313 A322670
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 22 2013
EXTENSIONS
3 more rows. - R. J. Mathar, Dec 09 2018
STATUS
approved