login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232224
Number of ways of arranging n chords on a circle (handshakes between 2n people across a table) with exactly 3 simple intersections.
3
0, 0, 0, 1, 20, 195, 1430, 9009, 51688, 278460, 1434120, 7141530, 34648856, 164663785, 769491450, 3546222225, 16152872400, 72846725160, 325722299760, 1445598337950, 6373942543800, 27942072562950, 121863923024844, 529043313674106, 2287209524819120
OFFSET
0,5
LINKS
V. Pilaud, J. Rué, Analytic combinatorics of chord and hyperchord diagrams with k crossings, arXiv preprint arXiv:1307.6440 [math.CO], 2013.
FORMULA
Pilaud-Rue give an explicit g.f.
a(n) = [x^(2n)] (1-sqrt(1-4*x^2))^6*((1-x^2)*sqrt(1-4*x^2)+7*x^2-26*x^4) / (64*x^6*sqrt(1-4*x^2)^5). - Michel Marcus, Sep 30 2015
MATHEMATICA
CoefficientList[Series[(1 - Sqrt[1 - 4 x^2])^6 ((1 - x^2) Sqrt[1 - 4 x^2] + 7 x^2 - 26 x^4)/(64 x^6 Sqrt[1 - 4 x^2]^5), {x, 0, 48}], x^2] (* Michael De Vlieger, Sep 30 2015 *)
PROG
(PARI) lista(nn) = {np = 2*nn+2; default(seriesprecision, np); pol = (1-sqrt(1-4*x^2))^6*((1-x^2)*sqrt(1-4*x^2)+7*x^2-26*x^4)/(64*x^6*sqrt(1-4*x^2)^5) + O(x^(np)); forstep (n=0, 2*nn, 2, print1(polcoeff(pol, n), ", "); ); } \\ Michel Marcus, Sep 30 2015
(PARI) x='x+O('x^33); concat([0, 0, 0], Vec((1-sqrt(1-4*x))^6*((1-x)*sqrt(1-4*x)+7*x-26*x^2) / (64*x^3*sqrt(1-4*x)^5))) \\ Joerg Arndt, Sep 30 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 22 2013
EXTENSIONS
Corrected initial terms and more terms from Lars Blomberg, Sep 30 2015
STATUS
approved