login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A067311
Triangle read by rows: T(n,k) gives number of ways of arranging n chords on a circle with k simple intersections (i.e., no intersections with 3 or more chords) - positive values only.
9
1, 1, 2, 1, 5, 6, 3, 1, 14, 28, 28, 20, 10, 4, 1, 42, 120, 180, 195, 165, 117, 70, 35, 15, 5, 1, 132, 495, 990, 1430, 1650, 1617, 1386, 1056, 726, 451, 252, 126, 56, 21, 6, 1, 429, 2002, 5005, 9009, 13013, 16016, 17381, 16991, 15197, 12558, 9646, 6916, 4641, 2912, 1703, 924, 462, 210, 84, 28, 7, 1
OFFSET
0,3
COMMENTS
Row n contains 1 + n(n-1)/2 entries. - Emeric Deutsch, Jun 03 2009
Row sums are A001147 (double factorials).
Columns include A000108 (Catalan) for k=0 and A002694 for k=1.
Coefficients of Touchard-Riordan polynomials defined on page 3 of the Chakravarty and Kodama paper, related to the array A039599 through the polynomial numerators of Eqn. 2.1. - Tom Copeland, May 26 2016
REFERENCES
P. Flajolet and M. Noy, Analytic combinatorics of chord diagrams; in Formal Power Series and Algebraic Combinatorics, pp. 191-201, Springer, 2000.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..4525 (rows 0..30)
S. Chakravarty and Y. Kodama, A generating function for the N-soliton solutions of the Kadomtsev-Petviashvili II equation, arXiv preprint arXiv:0802.0524v2 [nlin.SI], 2008.
P. Flajolet and M. Noy, Analytic combinatorics of chord diagrams, [Research Report] RR-3914, INRIA. 2000.
P. Luschny, First 10 rows of triangle (taken from Luschny link below)
J.-G. Penaud, Une preuve bijective d'une formule de Touchard-Riordan, Discrete Math., 139, 1995, 347-360. [From Emeric Deutsch, Jun 03 2009]
J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
Lucas Sá and Antonio M. García-García, The Wishart-Sachdev-Ye-Kitaev model: Q-Laguerre spectral density and quantum chaos, arXiv:2104.07647 [hep-th], 2021.
FORMULA
T(n,k) = Sum_{j=0..n-1} (-1)^j * C((n-j)*(n-j+1)/2-1-k, n-1) * (C(2n, j) - C(2n, j-1)).
Generating polynomial of row n is (1-q)^(-n)*Sum_{j=-n..n} (-1)^j*q^(j*(j-1)/2)*binomial(2*n,n+j). - Emeric Deutsch, Jun 03 2009
O.g.f. as a continued fraction: 1/(1 - t/(1 - (1 + x)*t/(1 - (1 + x + x^2)*t/(1 - (1 + x + x^2 + x^3)*t/(1 - ...))))) = 1 + t + (2 + x)*t^2 + (5 + 6*x +3*x^2 + x^4)*t^3 + .... See Chakravarty and Kodama, equation 3.8. - Peter Bala, Jun 13 2019
EXAMPLE
Rows start:
1;
1;
2, 1;
5, 6, 3, 1;
14, 28, 28, 20, 10, 4, 1;
42, 120, 180, 195, 165, 117, 70, 35, 15, 5, 1;
etc.,
i.e., there are 5 ways of arranging 3 chords with no intersections, 6 with one, 3 with two and 1 with three.
MAPLE
p := proc (n) options operator, arrow: sort(simplify((sum((-1)^j*q^((1/2)*j*(j-1))*binomial(2*n, n+j), j = -n .. n))/(1-q)^n)) end proc; for n from 0 to 7 do seq(coeff(p(n), q, i), i = 0 .. (1/2)*n*(n-1)) end do; # yields sequence in triangular form; Emeric Deutsch, Jun 03 2009
MATHEMATICA
nmax = 15; se[n_] := se[n] = Series[ Sum[(-1)^j*q^(j(j-1)/2)*Binomial[2 n, n+j], {j, -n, n}]/(1-q)^n , {q, 0, nmax}];
t[n_, k_] := Coefficient[se[n], q^k]; t[n_, 0] = Binomial[2 n, n]/(n + 1);
Select[Flatten[Table[t[n, k], {n, 0, nmax}, {k, 0, 2nmax}] ], Positive] [[1 ;; 55]]
(* Jean-François Alcover, Jun 22 2011, after Emeric Deutsch *)
PROG
(PARI)
M(n)=1/(1-q)^n*sum(k=0, n, (-1)^k * ( binomial(2*n, n-k)-binomial(2*n, n-k-1)) * q^(k*(k+1)/2) );
for (n=0, 10, print( Vec(polrecip(M(n))) ) ); /* print rows */
/* Joerg Arndt, Oct 01 2012 */
CROSSREFS
A067310 has a different view of the same table.
Cf. A039599.
Sequence in context: A275228 A118984 A073474 * A341487 A162750 A330984
KEYWORD
nonn,tabf
AUTHOR
Henry Bottomley, Jan 14 2002
EXTENSIONS
a(55) onwards from Andrew Howroyd, Nov 22 2024
STATUS
approved