login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067313
Numbers k such that sigma_k(k)/k is an integer, where sigma_k(k) is the sum of the k-th powers of the divisors of k (A023887).
2
1, 10, 130, 135, 147, 150, 228, 250, 350, 364, 410, 444, 492, 876, 891, 945, 1014, 1308, 1372, 1550, 1690, 1950, 2050, 2210, 2373, 2565, 2850, 3045, 3050, 3250, 3375, 3876, 4108, 4185, 4905, 4995, 5050, 5070, 5145, 5330, 5439, 5481, 6150, 6250, 6321, 6615, 6890, 7514
OFFSET
1,2
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from Amiram Eldar)
EXAMPLE
If k = 10, then sigma(10,10) = 1 + 1024 + 9765625 + 10000000000 = 1009766650 is divisible by k = 10.
MATHEMATICA
Do[s=DivisorSigma[n, n]; If[IntegerQ[s/n], Print[n]], {n, 1, 10000}]
Select[Range[6500], Divisible[DivisorSigma[#, #], #]&] (* Harvey P. Dale, Feb 06 2019 *)
PROG
(PARI) isok(k) = !(sigma(k, k) % k); \\ Michel Marcus, Aug 10 2020
(PARI) is(n) = {my(d = divisors(n), v = vecsum(vector(#d - 1, i, Mod(d[i], n)^n))); lift(v)==0} \\ David A. Corneth, Aug 10 2020
CROSSREFS
Cf. A023887.
Sequence in context: A360941 A007819 A054050 * A104130 A327810 A355422
KEYWORD
nonn
AUTHOR
Labos Elemer, Jan 14 2002
STATUS
approved