login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that sigma_k(k)/k is an integer, where sigma_k(k) is the sum of the k-th powers of the divisors of k (A023887).
2

%I #20 Aug 10 2020 13:19:14

%S 1,10,130,135,147,150,228,250,350,364,410,444,492,876,891,945,1014,

%T 1308,1372,1550,1690,1950,2050,2210,2373,2565,2850,3045,3050,3250,

%U 3375,3876,4108,4185,4905,4995,5050,5070,5145,5330,5439,5481,6150,6250,6321,6615,6890,7514

%N Numbers k such that sigma_k(k)/k is an integer, where sigma_k(k) is the sum of the k-th powers of the divisors of k (A023887).

%H David A. Corneth, <a href="/A067313/b067313.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Amiram Eldar)

%e If k = 10, then sigma(10,10) = 1 + 1024 + 9765625 + 10000000000 = 1009766650 is divisible by k = 10.

%t Do[s=DivisorSigma[n, n]; If[IntegerQ[s/n], Print[n]], {n, 1, 10000}]

%t Select[Range[6500],Divisible[DivisorSigma[#,#],#]&] (* _Harvey P. Dale_, Feb 06 2019 *)

%o (PARI) isok(k) = !(sigma(k, k) % k); \\ _Michel Marcus_, Aug 10 2020

%o (PARI) is(n) = {my(d = divisors(n), v = vecsum(vector(#d - 1, i, Mod(d[i], n)^n))); lift(v)==0} \\ _David A. Corneth_, Aug 10 2020

%Y Cf. A023887.

%K nonn

%O 1,2

%A _Labos Elemer_, Jan 14 2002