login
A322670
Number T(n,k) of colored set partitions of [n] where colors of the elements of subsets are distinct and in increasing order and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
7
1, 0, 1, 0, 1, 3, 0, 1, 12, 16, 0, 1, 41, 156, 131, 0, 1, 140, 1155, 2460, 1496, 0, 1, 497, 8020, 32600, 47355, 22482, 0, 1, 1848, 55629, 385420, 1004360, 1098678, 426833, 0, 1, 7191, 394884, 4396189, 18304510, 34625304, 30259712, 9934563
OFFSET
0,6
LINKS
FORMULA
Sum_{k=1..n} k * T(n,k) = A325930(n).
EXAMPLE
T(3,2) = 12: 1a|2a3b, 1b|2a3b, 1a3b|2a, 1a3b|2b, 1a2b|3a, 1a2b|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 3;
0, 1, 12, 16;
0, 1, 41, 156, 131;
0, 1, 140, 1155, 2460, 1496;
0, 1, 497, 8020, 32600, 47355, 22482;
0, 1, 1848, 55629, 385420, 1004360, 1098678, 426833;
...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(A(n-j, k)*
binomial(n-1, j-1)*binomial(k, j), j=1..min(k, n)))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n-j, k] Binomial[n-1, j-1]* Binomial[k, j], {j, 1, Min[k, n]}]];
T[n_, k_] := Sum[A[n, k-i] (-1)^i Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
CROSSREFS
Columns k=0-2 give: A000007, A057427, A325482.
Main diagonal gives A023998.
Row sums give A325478.
T(2n,n) gives A325481.
Sequence in context: A232223 A245111 A135313 * A277410 A368054 A289546
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 29 2019
STATUS
approved