The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245111 G.f.: A(x,y) = Sum_{n>=0} exp(-y/(1-n*x)) * y^n/(1-n*x)^n / n!. 3
 1, 0, 1, 0, 1, 3, 0, 1, 12, 10, 0, 1, 35, 90, 35, 0, 1, 90, 525, 560, 126, 0, 1, 217, 2520, 5460, 3150, 462, 0, 1, 504, 10836, 42000, 46200, 16632, 1716, 0, 1, 1143, 43470, 280665, 519750, 342342, 84084, 6435, 0, 1, 2550, 166375, 1709400, 4969965, 5297292, 2312310, 411840, 24310 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Compare g.f. to: 1/(1-x*y) = Sum_{n>=0} exp(-y*(1+n*x)) * y^n*(1+n*x)^n / n!. Row sums equal A245110. Antidiagonal sums: A218667. Main diagonal is: C(2*n-1,n) (A001700). Secondary diagonal: C(2*n-1,n)*n^2 (A002544). LINKS Paul D. Hanna, Table of n, a(n), of flattened triangle for rows 0..32 FORMULA T(n,k) = Stirling2(n, k) * binomial(n+k-1, k-1) for k>0, where Stirling2(n,k) = A048993(n,k). EXAMPLE G.f.: A(x,y) = 1 + x*y + x^2*(y + 3*y^2) + x^3*(y + 12*y^2 + 10*y^3) + x^4*(y + 35*y^2 + 90*y^3 + 35*y^4) + x^5*(y + 90*y^2 + 525*y^3 + 560*y^4 + 126*y^5) + x^6*(y + 217*y^2 + 2520*y^3 + 5460*y^4 + 3150*y^5 + 462*y^6) +... where A(x,y) = exp(-y) + exp(-y/(1-x))*y/(1-x) + (exp(-y/(1-2*x))*y^2/(1-2*x)^2)/2! + (exp(-y/(1-3*x))*y^3/(1-3*x)^3)/3! + (exp(-y/(1-4*x))*y^4/(1-4*x)^4)/4! + (exp(-y/(1-5*x))*y^5/(1-5*x)^5)/5! + (exp(-y/(1-6*x))*y^6/(1-6*x)^6)/6! + (exp(-y/(1-7*x))*y^7/(1-7*x)^7)/7! + (exp(-y/(1-8*x))*y^8/(1-8*x)^8)/8! +... simplifies to a power series with only integer coefficients of x^n*y^k. Triangle begins: 1; 0, 1; 0, 1, 3; 0, 1, 12, 10; 0, 1, 35, 90, 35; 0, 1, 90, 525, 560, 126; 0, 1, 217, 2520, 5460, 3150, 462; 0, 1, 504, 10836, 42000, 46200, 16632, 1716; 0, 1, 1143, 43470, 280665, 519750, 342342, 84084, 6435; 0, 1, 2550, 166375, 1709400, 4969965, 5297292, 2312310, 411840, 24310; 0, 1, 5621, 615780, 9754030, 42567525, 68549481, 47087040, 14586000, 1969110, 92378; ... where T(n,k) = A048993(n,k) * C(n+k-1, k-1) for k>0. PROG (PARI) /* From definition: */ {T(n, k)=local(A=1+x*y); A=sum(k=0, n, 1/(1-k*x+x*O(x^n))^k*y^k/k!*exp(-y/(1-k*x+x*O(x^n))+y*O(y^n))); polcoeff(polcoeff(A, n, x), k, y)} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) (PARI) /* From T(n, k) = Stirling2(n, k) * C(n+k-1, k-1) */ {Stirling2(n, k) = sum(j=0, k, (-1)^(k+j) * binomial(k, j) * j^n) / k!} {T(n, k)=if(k==0, 0^n, Stirling2(n, k) * binomial(n+k-1, k-1))} for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print("")) CROSSREFS Cf. A245110, A218667, A001700, A002544, A048993. Sequence in context: A327027 A145881 A232223 * A135313 A322670 A277410 Adjacent sequences:  A245108 A245109 A245110 * A245112 A245113 A245114 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Jul 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 23:48 EST 2021. Contains 349415 sequences. (Running on oeis4.)